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Abstract. We introduce pre-filtrations and pre-stable canonical rules for the

Kuznetsov–Muravitsky system of intuitionistic modal logic and provide a new
proof of the Kuznetsov–Muravitsky isomorphism, along with several preser-

vation results. The proofs employ these rules and a duality between modal

(Heyting) algebras and their corresponding order-topological spaces.

1. Introduction

The Kuznetsov–Muravitsky logic KM is among the most curious and intriguing
systems of Intuitionistic Modal Logic. It was introduced by Kuznetsov and Mu-
ravitsky in [19, 20]. One of the main motivations for studying this system was its
connection to the modal provability logic GL. According to Kuznetsov (see [30]),
understanding a logical system amounts to understanding the behavior of this sys-
tem and its “neighbors”—that is, the extensions of this logic. From this point if
view, the true intuitionistic counterpart of the system GL is the system whose lattice
of normal extensions is isomorphic to the lattice of normal extensiosn of GL. The
Kuznetsov–Muravitsky system precisely satisfies this condition. It was proved in
[22, 28, 29] that the lattice of normal extensions of GL is isomorphic to the lattice
of normal extensions of KM. Following Esakia [14], we will refer to this result as the
Kuznetsov–Muravitsky isomorphism.

We refer to [30] and [25] for a comprehensive history and overview of the system
KM. Here, we would like to highlight one additional illuminating result concern-
ing KM, commonly known as Kuznetsov’s theorem: adding the KM axioms to any
superintuitionistic logic yields a conservative extension of that logic. In algebraic
terms, every variety of Heyting algebras is generated by the Heyting reducts of
KM-algebras. This result was first announced by Kuznetsov in [21]. Kuznetsov’s
original proof was proof-theoretic in nature and a bit sketchy. It was later repro-
duced and expanded by Muravitsky [32]. More recently, Jibladze and E. Kuznetsov
[17] provided a purely algebraic proof of this result.

In this paper,1 we concentrate on the Kuznetsov–Muravitsky isomorphism, on
a related isomorphism between the lattice of normal extensions of the modalized
Heyting Calculus and of the modal logic K4.Grz, and the corresponding preservation
results. Our contribution consists in giving novel proofs of these known results.

Recently, a new proof of the lattice isomorphism between superintuitionistic
logics and normal extensions of the modal logic Grz—known as the Blok-Esakia
ismorphism—was given by the authors of this paper in [4]. The method is based on
the stable canonical formulas and rules [2, 3] and makes use of the duality between
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1This paper is partially based on the second-named author’s Master’s thesis [12].

1



2 NICK BEZHANISHVILI AND ANTONIO MARIA CLEANI

modal, Heyting, and frontal Heyting algebras on the one hand, and the correspond-
ing order-topological structures on the other. Using this technique, a new dual proof
of the Blok–Esakia isomorphism between superintuitionistic logics and the normal
extensions of the modal logic Grz was obtained in [4]. The other existing proofs
are due to Blok [6] (see also [33]), Esakia (which has never been published), and
Zakharyaschev (see, e.g., [11, Section 9.6]). Our approach was also generalized to
a new proof of a lattice isomorphism between bi-superintuitionistic logics and of
normal extensions of tense-Grz (originally proved by Wolter [35]). Furthermore,
the technique was also extended to a new proof of the Kuznetsov–Muravitsky iso-
morphism [4]. Note that for this, one only needs a theory of stable canonical rules
over the modal system K4.

In the present paper we revise this method by introducing the apparatus of
pre-stable canonical rules for KM and GL. This refinement allows us to obtain new
proofs of the preservation results (which was not achieved in [4]), since it requires
a theory of algebra-based rules for both KM and GL. To develop these, we revisit
constructions related to filtration for KM and GL used in [10] and [7], and related,
in the KM case, to a construction of Muravitsky [27]. We call these constructions
pre-filtrations, and the resulting rules pre-stable canonical rules. Equipped with this
technique, we revisit the proof strategy of [4] to obtain an alternative proof of the
Kuznetsov–Muravitsky isomorphism and of an isomorphism between the lattice of
normal extensions of the modalized Heyting Calculus and that of the modal system
K4.Grz. The latter result was first announced by Esakia [14] and later proved
by Litak [25] and Muravitsky [31] using different approaches. We will refer to it
as an Esakia theorem. We then prove some preservation results concerning the
Kuznetsov–Muravitsky isomorphism, extending proof strategies from [4] that take
full advantage of pre-stable canonical rules for KM.

With this paper we hope to provide a new perspective on the Kuznetsov–Mura-
vitsky system KM. We are honored and extremely happy to be able to contribute
this work to the volume dedicated to Professor Kuznetsov’s memory. The impact
of Kuznetsov’s work on many areas of mathematical logic is difficult to overstate.
We hope that the technique of pre-stable canonical rules for KM, together with the
isomorphism and preservation proofs, will serve as another stepping stone toward
understanding this beautiful and deeply intriguing system of intuitionistic modal
logic.

2. Preliminaries

2.1. Rule Systems. Throughout the paper we fix a countably infinite set of propo-
sitional variables Prop. The set Frmsim of superintuitionistic modal formulae is
defined recursively as follows:

φ ::= p | ⊥ |⊤ |φ ∧ φ |φ ∨ φ |φ→ φ |⊠φ,

where p ∈ Prop. The set of Frmclm classical modal formulae is defined recursively
as follows:

φ ::= p | ⊥ |⊤ |φ ∧ φ | ¬φ |□φ,
where, again, p ∈ Prop. We abbreviate the classical connectives → and ∨ in the
usual way.

For ♡ ∈ {sim, clm}, the set Rul♡ of ♡-rules is defined as the set of all ordered
pairs (Γ,∆) such that Γ,∆ are finite subsets of Frm♡. We adopt the convention of



PRE-FILTRATIONS, PRE-STABLE CANONICAL RULES AND THE KM-ISOMORPHISM 3

writing Γ/∆ for the rule (Γ,∆). Intuitively, a rule Γ/∆ says that if all the formulae
in Γ hold, then at least one of the formulae in ∆ holds.

For ♡ ∈ {sim, clm}, a ♡-rule system is defined as a set S of ♡-rules satisfying
the following conditions:

(1) If Γ/∆ ∈ S, then s[Γ]/s[∆] ∈ S for all substitutions s (structurality);
(2) φ/φ ∈ S for every ♡-formula φ (reflexivity);
(3) If Γ/∆ ∈ S, then Γ; Γ′/∆; ∆′ ∈ S for any finite sets of ♡-formulae Γ′,∆′

(monotonicity);
(4) If Γ/∆;φ ∈ S and Γ;φ/∆ ∈ S, then Γ/∆ ∈ S (cut);
(5) φ,φ→ ψ/ψ ∈ S for every ♡-formulae φ,ψ (modus ponens);
(6) φ/⊙φ for every ♡-formula φ, where ⊙ = ⊠ if ♡ = sim and ⊙ = □ if ♡ = clm

(necessitation).

Here by a substitution we mean a function s : Prop → Frm♡ which commutes with
all the primitive connectives of Frm♡.

If S is a set of ♡-rule systems and Σ,Ξ are sets of ♡-rules, we write Ξ ⊕S Σ for
the least ♡-rule system in S, if it exists, extending both Ξ and Σ. Likewise, we
write Ξ ⊕S Σ for the greatest ♡-rule system in S, if it exists, contained in both Ξ
and Σ. When S is clear from context, we write simply ⊕ and ⊗ instead of ⊕S and
⊗S . If S is a ♡-rule system, we write NExt(S) for the set of all ♡-rule systems
extending S.

The set of all ♡-rule systems forms a complete lattice under the operations ⊕
and ⊗; the meet ⊗ in fact coincides with intersection. Given two ♡-rule systems
S, S′ and a set of ♡-rules Ξ, we say that Ξ axiomatizes S over S′ when S′ ⊕ Ξ = S,
where the join is that of the lattice of all ♡-rule systems. We say simply that Ξ
axiomatizes S when Ξ axiomatizes S over S′ and S′ is the least ♡-rule system.

A ♡-logic is a ♡-rule system axiomatized by a set of assumption free, single-
conclusion rules—that is, by a set of rules of the form /φ for some ♡-formula
φ. Logics in this sense correspond one-to-one with logics conceived of as sets of
formulae closed under appropriate conditions, which is the most common conception
of logics in the literature. Indeed, when L is a logic in the latter sense, the rule
system (in the appropriate signature) axiomatized by all rules /φ for φ ∈ L is a
logic in our sense.

If S is a set of ♡-rule systems and L, L′ are ♡-logics, we write L⊔S L
′ and L⊓S L

′,
respectively, for the least ♡-logic in S extending both L and L′ and for the greatest
♡-logic in S contained in both L and L′, provided they exist. As before, we omit
subscripts when they can be inferred from context. It turns out that ⊔S and ⊓S are
always well defined when S is the set of all ♡-rule systems, as are their infinitary
versions. Thus the set of all ♡-logics carries a complete lattice. If L is a ♡-logic,
we write NExtL(L) for the lattice of all ♡-logics extending L.

It is easy to see that, over the set of all ♡-rule systems, the join L ⊕ L′ of two
♡-logics is always a ♡-logic. Thus ⊔ coincides with ⊕. However, L ⊗ L′ may not
be a logic. It will be useful to give a characterization of ⊓ in terms of ⊗. If S is a
♡-rule system, let Taut(S) be the logic axiomatized by all rules of the form /φ such
that /φ ∈ S.

Proposition 2.1. The identity

⊓{Li : i ∈ I} = Taut(⊗{Li : i ∈ I})

holds for any set of ♡-logics {Li : i ∈ I}.
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For a proof, see [4, Prop. 1.3].
The main rule systems of interest in this paper are the following. On the sim

side, the system mHC (the modalized Heyting calculus) is defined as the least sim-rule
system containing /φ whenever φ is a theorem of the intuitionistic propositional
calculus, as well as the rules

/⊠(p→ q) → (⊠p→ ⊠q),
/p→ ⊠p,
/⊠p→ (q ∨ (q → p)).

Among systems in NExt(mHC), the system KM (the Kuznetsov-Muravitsky rule sys-
tem) is of particular interest. It is defined as the least rule system in NExt(mHC)
containing the Gödel-Löb rule:

/(⊠p→ p) → p.

We refer to [14, 30] for more infromation about mHC and KM.
Now to the clm-rule systems. The weakest such system we consider is the system

K4, defined as the least clm-rule system containing /φ whenever φ is valid in all
transitive Kripke frames. Next, the system K4.Grz is axiomatized over K4 by the
Grzegorczyk rule

/□(□(p→ □p) → p) → p.

And finally, we have the system GL, which is axiomatized over K4 by adding the
classical version of the Gödel-Löb rule:

/□(□p→ p) → □p.
We note that K4.Grz is non-reflexive counterpart of the Grz. We refer to [14] for
more details on K4.Grz.

2.2. Algebras. We recall that a Heyting algebra is a tuple H := (H,∧,∨,→, 0, 1)
whose →-free reduct is a bounded distributive lattice and the equivalence

c ≤ a→ b ⇐⇒ a ∧ c ≤ b

holds for each a, b, c ∈ H. A frontal Heyting algebra is a structure H := (H,∧,∨,→
,⊠, 0, 1) whose ⊠-free reduct is a Heyting algebra and ⊠ satisfies the following
equalities and inequalities for all a, b ∈ H:

⊠1 = 1,

⊠(a ∧ b) = ⊠a ∧⊠b,
a ≤ ⊠a,
⊠a ≤ b ∨ (b→ a).

A frontal Heyting algebra is called a fronton if, in addition, the identity

(⊠a→ a) ≤ a

holds for all a ∈ H. We refer to [9, 14] for more infromation on these structures. We
write fHA and Frt for the classes of all frontal Heyting algebras and of all frontons
respectively.

On the classical side, a modal algebra is a tuple M := (M,∧,¬,□, 0, 1) whose
□-free reduct is a Boolean algebra and the identities

□1 = 1, □(a ∧ b) = □a ∧□b
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hold for all a, b ∈M . A modal algebra is called

• A K4-algebra when it satisfies the inequality

□a ≤ □□a;

• A K4.Grz-algebra when it satisfies the inequality

□(□(a→ □a) → a) ≤ a;

• A Magari algebra when, in addition to the above, it satisfies the inequality

□(□a→ a) ≤ □a.

We write K4,K4.Grz and Mag for the classes of all modal algebras, of all K4-algebras,
of all K4.Grz-algebras, and of all Magari algebras respectively.

A universal class is a class of algebras in the same signature closed under isomor-
phic copies, subalgebras and ultraproducts. A variety is a universal class which, in
addition, is closed under homomorphisms and direct products. When U is a class
of algebras in the same signature, we write Uni(U) and Var(U), respectively, for
the sets of universal classes and of varieties contained in U . We note that both sets
form complete lattices, where the meets coincide with intersection.

The algebras just introduced can be used to give sound and complete semantics
for sim- and clm-rule systems. When A is an algebra, a valuation is any mapping
V : Frm♡ → A that commutes with all primitive connectives of Frm♡, where
♡ = sim if A is a frontal Heyting algebra and ♡ = clm if A is a modal algebra. An
algebra equipped with a valuation is called a model. We say that a model (A, V )
satisfies a rule Γ/∆ when the following holds: if V (γ) = 1 for all γ ∈ Γ, then
V (δ) = 1 for some δ ∈ ∆. We notate this as A, V |= Γ/∆. A rule Γ/∆ is valid on
a ν-algebra A when A, V |= Γ/∆ holds for all valuations V on A. When this holds
we write A |= Γ/∆, otherwise we write A ̸|= Γ/∆ and say that A refutes Γ/∆. We
can extend this notion of validity to classes of ν-algebras in the obvious way; we
use similar notation in this case.

For ♡ ∈ {sim, clm}, when S is a ♡-rule system, we write Alg(S) for the class of
all algebras of the appropriate kind (frontal Heyting for ♡ = sim, modal otherwise)
that validate every Γ/∆ ∈ S. Conversely, if U is a class of frontal Heyting or modal
algebras, we let ThR(U) be the set of all ♡-rules that are valid in every member of
U , with ♡ = sim if U is a class of frontal Heyting algebras, ♡ = clm otherwise. By
Birkhoff’s theorem (see, e.g., [8]), Alg(S) is always a universal class, and indeed a
variety when S is a logic. Conversely, ThR(U) is always a rule system, and indeed
a logic when U is a variety.

Theorem 2.2. The following pairs of mappings are complete dual lattice isomor-
phisms:

(1) Alg : NExt(mHC) → Uni(fHA) and ThR : Uni(fHA) → NExt(mHC);
(2) Alg : NExt(K4) → Uni(K4) and ThR : Uni(K4) → NExt(K4);
(3) Alg : NExtL(mHC) → Var(fHA) and ThR : Var(fHA) → NExtL(mHC);
(4) Alg : NExtL(K4) → Var(K4) and ThR : Var(K4) → NExtL(K4).

Proof. For Items 2 and 4, see [16, Thm. 2.2] and [11, Thm. 7.56]. Item 3 follows
from [37, Prop. 1], and the proof of Item 1 is a routine generalization. □
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Corollary 2.3. Every sim-rule system (resp. clm-rule system) is complete with
respect to a universal class of frontal Heyting algebras (resp. modal algebras). Like-
wise, every sim-logic (resp. clm-logic) is complete with respect to a variety of frontal
Heyting algebras (resp. modal algebras).

It should be apparent that Frt = Alg(KM), since a frontal Heyting algebra H
satisfies the inequality ⊠a → a ≤ a iff it validates the rule /(⊠p → p) → p. It is
likewise apparent that K4 = Alg(K4), K4.Grz = Alg(K4.Grz) and Mag = Alg(GL).

2.3. Spaces and Kripke Frames. We will also interpret rule systems over ex-
pansions of Stone spaces and over Kripke frames. When X is a set and U ⊆ X, we
write X ∖ U for the complement of U in X. If X is clear from context, we write
−U instead of X ∖ U . Given a binary relation ≺ on a set X, for any U ⊆ X we
define

⇑≺U := {x ∈ X : y ≺ x for some y ∈ U},
⇓≺U := {x ∈ X : x ≺ y for some y ∈ U}.

In the case where U = {y} we write ⇑≺x and ⇓≺x instead of ⇑≺{x} and ⇑≺{x}.
We omit subscripts when the relation is clear from context.

We recall that a Stone space is a compact Hausdorff space with a basis of clopens.
A modal space is a triple X = (X,R,O) such that (X,O) is a Stone space and R is
a binary relation satisfying the following conditions:

(1) ⇑x is closed for every x ∈ X;
(2) ⇓U ∈ Clop(X) for every U ∈ Clop(X).

A modalized Esakia space is a quadruple X = (X,≤,<,O) such that (X,O) is a
Stone space and ≤,< are binary relations satisfying the following conditions:

(1) ≤ is reflexive and transitive;
(2) ⇑≤x is closed for every x ∈ X;
(3) ⇓≤U ∈ Clop(X) for every U ∈ Clop(X);
(4) {x ∈ X : ⇑<x ⊆ U} ∈ ClopUp≤(X) whenever U ∈ ClopUp≤(X);
(5) The reflexive closure of < coincides with ≤.

We refer to [9] and [14] for more infromation about modalized Esakia spaces.
A modal space is a triple X = (X,R,O) such that (X,O) is a Stone space and

R is a binary relation on X satisfying the following conditions:

(1) ⇑Rx is closed for every x ∈ X;
(2) ⇓RU ∈ Clop(X) for every U ∈ Clop(X).

In any modal space, we let R+ denote the reflexive closure of R.
When X,Y are modalized Esakia spaces, a mapping f : X → Y is called a

bounded morphism when it is continuous and both the conditions below hold when-
ever ≺∈ {≤,<}.

(1) For all x, y ∈ X, if x ≺ y, then f(x) ≺ f(y);
(2) For all x ∈ X and y ∈ Y , if f(x) ≺ y, then there is some z ∈ X such that

Rxz and f(z) = y.

Likewise, when X,Y are modal spaces, a mapping f : X → Y is called a bounded
morphism when it is continuous and both the conditions above hold for ≺= R.

The categories of modalized Esakia spaces and of modal spaces, with their re-
spective bounded morphisms, are dual to those of frontal Heying algebras and
modal algebras with homomorphisms. Both these dualities are generalizations of
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the celebrated Stone duality between Boolean algebras and Stone spaces. Given
an algebra A, we construct its dual space A∗ as follows. As the carrier we take
the set of all prime filters on A. A basis of clopens for the topology is given by
all the sets of prime filters of the form β(a) for some a ∈ A, where β(a) is the set
of all prime filters to which a belongs. When A is a frontal Heyting algebra, the
intuitionistic relation ≤ on the dual coincides with prime filter inclusion, whereas
the modal relation is given by

x < y : ⇐⇒ ⊠a ∈ x implies a ∈ y for all a ∈ A.

When A is a modal algebra, the modal relation R is defined exactly like <, but
substituting □ for ⊠. In both cases, if h : A → B is a homomorphism, the dual
bounded morphism h∗ : B∗ → A∗ coincides with the preimage mapping h−1.

Conversely, if X is a space, its dual algebra X∗ is constructed as follows. When
X is a modalized Esakia space, the carrier is ClopUp≤(X). The Heyting implication
→ and modal operator ⊠ of X∗ are given by the identities

U → V := −⇓≤(U ∖ V ),

⊠U := {x ∈ X : ⇑<x ⊆ U}.

On the other hand, when X is a modal space, the carrier of X∗ is Clop(X) and the
modal operator □ is defined the same way as ⊠, but substituting R for <. In both
cases, when f : X → Y is a bounded morphism, the dual homomorphism f∗ : Y∗ →
X∗ again coincides with the preimage mapping f−1. Using these constructions we
can prove the following duality result.

Theorem 2.4. The following categories are dually equivalent:

(1) Frontal Heyting algebras with homomorphisms and modalized Esakia spaces
with bounded morphisms [9, Thm. 4.11];

(2) Modal algebras with homomorphisms and modal spaces with bounded mor-
phisms [18].

A sim-Kripke frame is defined as a triple X = (X,≤,<) that satisfies all the non-
topological conditions from the definition of a modalized Esakia space. Likewise,
a clm-Kripke frame is a triple X = (X,R) that satisfies all the non-topological
conditions from the definition of a modal space. It will be convenient to treat
Kripke frames as equipped with the discrete topology. Thus, when X is a Kripke
frame, Clop(X) refers to ℘(X) and ClopUp≺(X) refers to all the upsets (relative to
≺) in X. Thus the two notions of bounded morphism defined for spaces readily
apply to Kripke frames.

The constructions underwriting Theorem 2.4 can be adapted to obtain duality
results connecting Kripke frames and algebras of appropriate kinds. In the algebras-
to-frames direction, the main change is to take the set of completely join prime
filters instead of the set of prime filters as the carrier. Accordingly, the Stone map
β is replaced with the mapping α that sends an element of an algebra to the set
of completely join prime filters containing it. The other direction is essentially
unchanged, given the conventions just mentioned about treating Kripke frames as
equipped with the discrete topology.

Theorem 2.5. The following categories are dually equivalent:
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(1) sim-Kripke frames with bounded morphisms and complete, completely dis-
tributive and completely join prime generated Heyting algebras with com-
plete homomorphisms;

(2) clm-Kripke frames with bounded morphisms and complete, atomic, com-
pletely additive and completely distributive modal algebras with complete
homomorphisms.

This result was first proved in [34] for clm-Kripke frames, see also [24]. That it
holds for sim-Kripke frames appears to be a new observation, though the proof is a
straightforward consequence of a similar result due to de Jongh [13] for intuitionistic
Kripke frames.

A sim-interpretation is a mapping V : Frmsim → ClopUp≤(X), where X is a
modalized Esakia space or a sim-Kripke frame, that commutes the right way with
connectives, in particular:

V (φ→ ψ) = −⇓≤(V (φ) ∖ V (ψ)),

V (⊠φ) := {x ∈ X : ⇑<x ⊆ V (φ)}.

A clm-interpretation is a mapping V : Frmclm → Clop(X), where X is a modal
space or a clm-Kripke frame, that commutes the right way with connectives, in
particular:

V (□φ) = {x ∈ X : ⇑Rx ⊆ V (φ)}.
In either case we write X, V, x |= φ to mean that x ∈ V (φ), and X, V |= φ to mean
that X, V, x |= φ holds for all x ∈ X. We write X, V |= Γ/∆ to mean the following:
if X, V |= γ for each γ ∈ Γ, then X, V |= δ for some δ ∈ ∆. A rule Γ/∆ is said to
be valid in a space or Kripke frame X when X, V |= Γ/∆ holds for all valuations
of the appropriate sort, otherwise it is refuted. We write X |= Γ/∆ to mean that
Γ/∆ is valid in X, and X ̸|= Γ/∆ to mean it is refuted in X. The notions of validity
and refutability can be straightforwardly generalized to classes of spaces or Kripke
frames; we use similar notation for these cases.

2.4. Properties of Transitive Structures. We list here some basic properties
of spaces and Kripke frames we will appeal to throughout the paper. Let X be a
K4.Grz-space and U ∈ Clop(X). We define:

max (U) := {x ∈ U : ⇑Rx ∩ U ⊆ {x}},
pas (U) := {x ∈ U : if Rxy and y /∈ U , then ⇑Ry ∩ U = ∅.}

We call elements of max (U) maximal in U , and elements of pas (U) passive in U .2

Intuitively the maximal elements of U are those that do not “see” elements of U
other than, at most, themselves, and the passive elements of U are those elements
of U from which it is impossible to “leave” and “re-enter” U . We define analogous
notions for modalized Esakia spaces, substituting < for R.

Proposition 2.6. Let X be a K4.Grz-space and let U ∈ Clop(X). Then max (U) is
closed and pas (U) ∈ Clop(X).

Proof. Follows from [15, Thm. 3.2.1, 3.5.5]. □

2The terminology of “passive” points is due to Esakia [15].
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Proposition 2.7. Let X be a modalized Esakia space. For all U ∈ Clop(X) and any
x ∈ X, if ⇑≤x ∩ U ̸= ∅, then ⇑≤x ∩max (U) ̸= ∅. Consequently, if ⇑<x ∩ U ̸= ∅,
then ⇑<x ∩ max (U) ̸= ∅. The claim remains true if we let X be a K4.Grz-space
and substitute R+ for ≤ and R for <.

Proof. In both versions of the statement, the first part follows from [15, Thm. 3.2.3].
For the second part, assume ⇑<x ∩ U ̸= ∅. If x ∈ max (U), then ⇑<x = {x} and
we are done, so suppose otherwise. We have ⇑≤x ∩ U ̸= ∅, so ⇑≤x ∩max (U) ̸= ∅
by the first part. This means there is y ∈ max (U) with x ≤ y. Since x /∈ max (U),
we have x ̸= y, and so x < y. The modal case is analogous. □

Proposition 2.8. The following conditions hold:

(1) A modalized Esakia space X is a KM-space iff no point x ∈ max (U) is such
that x < x, for every U ∈ ClopDown≤(X);

(2) A K4.Grz-space X is a GL-space iff no point x ∈ max (U) is such that Rxx,
for every U ∈ Clop(X).

Proof. KM case. (⇒) Let X be a modalized Esakia space, let U ∈ ClopDown(X) and
assume x ∈ max (U). Suppose towards a contradiction that x < x. Let V (p) = −U .
Then V (p) ∈ ClopUp(X). If y ∈ ⇑<x, then either x = y, in which case X, V, y ̸|= ⊠p,
or x ̸= y, so both X, V, y |= ⊠p and X, V, y |= p. Either way, X, V, x |= ⊠p→ p, yet
X, V, x ̸|= p. This contradicts the KM axiom (⊠p→ p) → p.

(⇐) Assume X is not a KM-space. Then there is a valuation V and a point x ∈ X
such that X, V, x |= ⊠p→ p and X, V, x ̸|= p. This can only happen if x ̸< x.

GL case. (⇒) Let X be a GL-space, let U ∈ Clop(X) and assume x ∈ max (U).
Suppose towards a contradiction that Rxx. Define V (p) = U . Then X, V, x |= ♢p.
However, if y ∈ ⇑Rx, then either x = y, in which case X, V, y ̸|= □¬p, or x ̸= y, in
which case X, V, y ̸|= p. Either way, X, V, y ̸|= □¬p∧p, showing X, V, x ̸|= ♢(□¬p∧p).
This contradicts the GL-axiom □(□p→ p) → □p.

(⇐) Assume X is not a GL-space. Then there is a valuation V and a point x ∈ X
such that X, V, x |= □(□p → p) and X, V, x ̸|= □p. This can only happen if Rxx
fails. □

Proposition 2.9. Let X be a Kripke frame for either KM or GL. Then the modal
relation in X is conversely well-founded (hence irreflexive.)

Proof. The arguments are very similar to those given above. See, e.g., [25, Cor. 3]
for the KM-case and [5, Ex. 3.9]. □

Lastly, when X is a space and ≺ is its modal relation, a non-empty set C ⊆ X is
called a cluster when it is maximal with the property that, if x, y ∈ C, then both
x ≺ y and y ≺ x. A set U ⊆ X is said to cut a cluster C ⊆ X when neither C ⊆ U
nor C ∩U = ∅ holds. A cluster is called proper when its cardinality is greater than
one, improper otherwise.

3. Filtration and Pre-filtration

So much for preliminaries. We now move on to discussing our notion of pre-
filtration. As noted earlier, pre-filtration is motivated by the fact that standard
filtration does not work well for KM and GL. So let us begin by reviewing the
standard notion of filtration.
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3.1. Stable and Pre-stable Maps. We begin by introducing some key definitions
needed for our discussion of filtration and pre-filtration. Since we are mainly inter-
ested in the correspondence between sim- and clm-rule systems, we will henceforth
restrict attention to K4-algebras in the clm case.

Throughout the paper we will often think of K4-algebras as bimodal algebras in
a signature expanded with an extra modal operator □+, defined by □+ := □a ∧ a
[25]. This perspective will help us emphasize the connection between K4-algebras
and frontal Heyting algebras. Note that the identity

□a = □+□□+a (mix )

always holds in any K4-algebra.

Definition 3.1 (Stable embedding). Let A,B be either frontal Heyting algebras
or K4-algebras. An injection h : A → B is called a stable embedding when the
following conditions hold:

(1) Frontal Heyting case: h is a bounded distributive lattice embedding and
h(⊠a) ≤ ⊠h(a) holds for each a ∈ A;

(2) K4-case: h is a Boolean embedding and h(□a) ≤ □h(a) holds for each
a ∈ A.

Note that whenever h : H → K is a distributive lattice embedding between frontal
Heyting algebras, the inequality h(a → b) ≤ h(a) → h(b) always holds for all
a, b ∈ H. Moreover, whenever h : M → N is a stable embedding between K4-
algebras, the inequality h(□+a) ≤ □+h(a) always holds. Thus, a stable embedding
partially preserves both → and ⊠ in the sim-case, and both □+ and □ in the
clm-case.

Let A be an algebra. A unary domain on A is simply a finite subset D ⊆ A,
whereas a binary domain on A is a finite subset D ⊆ A×A.

Definition 3.2 (Bounded domain condition). Let A,B be either frontal Heyting
algebras or K4-algebras. When ⊙ is a unary or binary operator on A (primitive or
compound), we say that a map h : A → B satisfies the ⊙-bounded domain condition
(BDC⊙) for a domain D of appropriate arity when the identities

h(⊙a) = ⊙h(a) if ⊙ is unary,

h(a⊙b) = h(a)⊙h(b) otherwise

hold for every element of D.

In other words, h satisfies the BDC⊙ for a domain when it fully preserves ⊙ on
elements that belong to the domain.

We now give a dual description of stable embeddings and the BDC.

Definition 3.3 (Stable map, dual). Let X,Y be modalized Esakia spaces, K4-
spaces, sim- or clm-Kripke frames. A map f : X → Y is called stable when it is
continuous and preserves all the primitive relations of X—so both ≤ and < in the
sim case and R in the clm case.

The requirement that stable maps preserve ≤ is strictly speaking redundant, since
any map between modalized Esakia spaces or sim-Kripke frames that preserves <
automatically preserves ≤. Furthermore, in the clm case, it is clear that stable
maps also preserve the reflexive closure R+ of R.



PRE-FILTRATIONS, PRE-STABLE CANONICAL RULES AND THE KM-ISOMORPHISM 11

If X is a modalized Esakia space or sim-Kripke frame, a unary domain on X
is a finite subset D ⊆ ClopDown≤(X), whereas a binary domain is a finite subset
D ⊆ Clop(X) where each d ∈ D is of the form U∩−V , with both U, V ∈ ClopUp≤(X).
Equivalently, each d must equal the intersection of a clopen upset with a clopen
downset. On the other hand, if X is a transitive modal space or clm-Kripke frame,
a unary domain on X is just a finite subset D ⊆ Clop(X).

Definition 3.4 (Bounded domain condition, dual). Let X,Y be spaces or Kripke
frames, let ≺ be any binary relation on X and let D be a unary or binary domain on
Y. We say that a stable map f : X → Y satisfies the ≺-bounded domain condition
(BDC≺) for D when the following holds: for each x ∈ X and any d ∈ D, if there is
some y ∈ d such that f(x) ≺ y, then there must be some z ∈ X such that x ≺ z
and f(z) ∈ d.

Notice that when Y is finite and D consists precisely of the singletons of points
in Y , f is stable and satisfies the BDC≺ for D precisely when it is a bounded
morphism with respect to the relation ≺, whence the name for the condition.

Here is the key duality result relating the concepts just introduced.

Proposition 3.5. The following are equivalent, for all frontal Heyting algebras
H,K and all K4-algebras M,N:

(1) A map h : H → K is a stable embedding satisfying the BDC→ for D→ and
the BDC⊠ for D⊠ iff h−1 : K∗ → H∗ is a stable surjection satisfying the
BDC≤ for D→

∗ and the BDC< for D⊠
∗ , where

D→
∗ := {β(a) ∩ −β(b) : (a, b) ∈ D→},

D⊠
∗ := {−β(a) : a ∈ D□}.

Moreover, the same holds when we substitute H+, K+ and α for H∗, K∗ and
β respectively, when the former are well defined.

(2) A map h : M → N is a stable embedding satisfying the BDC□ for D□ iff
h−1 : N∗ → M∗ is a stable surjection satisfying the BDC□ for D□

∗ , where

D□
∗ := {−β(a) : a ∈ D⊠}.

Moreover, the same holds when we substitute M+, N+ and α for M∗ and
N∗ and β respectively, when the former are well defined.

A proof of the modal case for spaces is given in [4, Sec. 3], and can be straightfor-
wardly adapted to cover the remaining cases.

We will also need slight variants of the concepts just introduced, to be used in
defining our notion of pre-filtration. The first two are weakenings of the notions of
a stable embedding and of a stable map.

Definition 3.6 (Pre-stable embedding). Let A,B be either frontal Heyting alge-
bras or K4-algebras. An injection h : A → B is called a pre-stable embedding when
the following conditions hold:

(1) Frontal Heyting case: h is a bounded distributive lattice embedding;
(2) K4-case: h is a Boolean embedding and h(□+a) ≤ □+h(a) holds for each

a ∈ A.

Since, as noted already, every bounded distributive lattice embedding partially
preserves → and every Boolean embedding that partially preserves □ also partially
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preserves□+, pre-stable embeddings differ from stable embeddings only in that they
do not require the partial preservation of ⊠ and □, depending on the signature.

We note the following simple fact.

Proposition 3.7. Let M,N be K4-algebras, let h : M → N a pre-stable embedding

and let D ⊆ N . If h satisfies the BDC□ for D, then it satisfies the BDC□+

for D.

Proof. Immediate from the fact that □+a := □a ∧ a and the fact that pre-stable
embeddings are Boolean embeddings. □

Definition 3.8 (Pre-stable map, dual). Let X,Y be modalized Esakia spaces, K4-
spaces, sim- or clm-Kripke frames. a map f : X → Y is called pre-stable when it is
continuous and preserves ≤ (in the sim case) and R+ (in the clm case).

Again, pre-stable maps differ from stable maps only in that the preservation of <
and R is not required.

We need one last definition, which is a slight strengthening of the BDC.

Definition 3.9 (Back and forth condition). Let X,Y be spaces or Kripke frames,
let ≺ be any binary relation on X and let D be a unary or binary domain on Y. We
say that a pre-stable map f : X → Y satisfies the back and forth condition (BFC≺)
for D when the following conditions hold for each x ∈ X and any d ∈ D:

Back:: If there is some y ∈ d such that f(x) ≺ y, then there must be some z ∈ X
such that x ≺ z and f(z) ∈ d;

Forth:: if there is y ∈ f−1(d) with x ≺ y, then there must be some z ∈ d with
f(x) ≺ z.

In other words, f satisfies the BDC≺ for D when ⇑≺f(x)∩d ̸= ∅ holds iff f [⇑≺x]∩
d ̸= ∅, for all x ∈ X and d ∈ D. Note that every stable map that satisfies the BDC≺

for D automatically satisfies the BFC≺ for the same domain, since the requirement
that a stable map preserve ≺ implies the second item in the definition of the BFC≺.
However, of course, not every pre-stable maps that satisfies the BFC≺ for a domain
is stable.

A duality result analogous to Proposition 3.5 can be established using essentially
the same argument.

Proposition 3.10. The following are equivalent, for all frontal Heyting algebras
H,K and all K4-algebras M,N:

(1) A map h : H → K is a pre-stable embedding satisfying the BDC→ for D→

and the BDC⊠ for D⊠ iff h−1 : K∗ → H∗ is a pre-stable surjection satisfying
the BFC< for D⊠

∗ and the the BFC≤ for D⊠
∗ , with D

→
∗ and D⊠

∗ defined as
before. Moreover, the above remains true when we substitute H+, K+ and
α for H∗, K∗ and β respectively, when the former are well defined;

(2) A map h : M → N is a stable embedding satisfying the BDC□+

for D□+

and the BDC□ for D□ iff h−1 : N∗ → M∗ is a stable surjection satisfying

the BFCR+

for D□+

∗ and the BFCR for D□
∗ , with D□

∗ defined as before

and D□+

∗ defined in analogous fashion. Moreover, the same holds when we
substitute M+, N+ and α for M∗ and N∗ and β respectively, when the
former are well defined.
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Proof. The argument is very similar to that given in the proof of Proposition 3.5.
The only difference lies in showing that h satisfies the BFC⊠ for D⊠ iff h∗ satisfies
the BFC for D⊠

∗ , and the counterpart claim in the clm case. This is routine. □

Before we move forward, we note a property of pre-stable maps over GL-spaces,
which will come useful later.

Lemma 3.11. Let X,Y be GL-spaces and let f : X → Y be a pre-stable map
satisfying the BFCR for some D. Then f−1(max (d)) = max (f−1(d)) for each
d ∈ D.

Proof. Assume f(x) /∈ max (d). Suppose ⇑Rf(x) ∩ d ̸= ∅. Since f satisfies the
BFC for d, we must have ⇑Rx ∩ f−1(d) ̸= ∅, which implies x /∈ max (f−1(d)) by
Proposition 2.8. The other direction is analogous, but using the “forth” condition
from the BFC. □

3.2. Shortcomings of Standard Filtration. We take an algebraic approach to
defining filtration, following [2, 3].

Definition 3.12. Let A be an algebra, V a valuation on M, and Θ a finite, subfor-
mula closed set of formulae (in the appropriate signature). A finite model (N, V ′)
is called a filtration of (M, V ) through Θ if the following conditions hold:

(1) sim case
(a) The bounded distributive lattice reduct of B is isomorphic to the

bounded distributive sublattice of A generated by V [Θ];
(b) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(c) The inclusion ⊆: B → A is a stable embedding satisfying the BDC→

for the domain {(V (φ), V (ψ)) : φ → ψ ∈ Θ} and the BDC⊠ for the
domain {V (φ) : ⊠φ ∈ Θ}.

(2) clm case
(a) The Boolean algebra reduct of B is isomorphic to the Boolean subal-

gebra of A generated by V [Θ];
(b) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(c) The inclusion ⊆: B → A is a stable embedding satisfying the BDC□

for the set {V (φ) : □φ ∈ Θ}.

The definition of filtration in the clm case is completely standard. The literature
on sim-rule systems and logics is far more limited than that on clm-rule systems
and logics, to the point that it may not make much sense to speak of a standard
definition of filtration in this setting. But the definition just given is as standard as
it can be: it is obtained by simply conjoining the standard definition of filtration
for models based on modal algebras with the standard definition of models for
superintuitionistic logics based on Heyting algebras.

By Proposition 3.5, it follows that a finite model (B, V ′) is a filtration of a model
(A, V ) through some set of formulae only if there is a stable surjection from A∗ to
B∗. This shows why filtration does not work well for either Magari algebras or
KM-algebras: some GL-spaces have no image under a stable surjection which is also
a GL-space, and the same holds true for KM-spaces.

Considering the case of GL first, an example is the space X depicted in Section 3.2.
This space is constructed as follows:

• X = N ∪ {ω0, ω1};
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Figure 1. The GL-space X

• R = {(n,m) ∈ N× N : m < n} ∪ {(ωi, x) ∈ X ×X : i ∈ {0, 1} and x ∈ X};
• O is given by the basis consisting of all U ⊆ X such that either U is a finite

subset of N, or U = V ∪ {ω0, ω1} with V a cofinite subset of N, or U is one
of the following sets:

{n ∈ N : n is even} ∪ {ω0} {n ∈ N : n is odd} ∪ {ω1}.

This space contains a non-trivial cluster made up of two reflexive points, but
it is nonetheless a GL-space. To see this, one need only observe that any U ∈
Clop(X) that contains at least one of ω1, ω2 must also contain some element n ∈ N.
Indeed, any x ∈ max (U) must belong to N, which consists entirely of irreflexive
points. By Proposition 2.8, this implies that X is a GL-space. Now, we know from
Proposition 2.9 that no finite GL space can contain reflexive points. Yet every image
of X under a stable map must contain at least one reflexive point, namely the image
of ω1 or of ω2. Thus, no filtration of any model based on X is based on a GL-space.

It is worth remarking on why this shows that filtration does not work well for
GL and its extensions. A paradigm application of the filtration construction is to
prove finite model property results. To prove that a rule system M has the finite
model property using filtration, one takes a model M that refutes a rule Γ/∆ and
then constructs a filtration of that model through Sfor(Γ/∆). The filtration always
refutes Γ/∆, but the argument only suffices to establish the finite model property if
the filtration is also a model of M. Examples like the one just given therefore show
that filtration is not a good tool for proving that GL or some extension thereof has
the finite model property.

These remarks generalize to the case of KM. Consider, for example, the KM-space
obtained by collapsing the lower cluster from the space X in Section 3.2, letting
the modal relation be as before (modulo the collapse of the cluster) and letting the
intuitionistic relation be the reflexive closure of the modal relation. The resulting
space is depicted in Section 3.2. It has a reflexive point under the modal relation,
so any surjective image thereof under a relation preserving map must have one as
well. But no finite KM-space can contain reflexive points under the modal relation.
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Figure 2. The KM-space Y

3.3. Pre-filtration. We have discussed the shortcomings of standard notions of
filtration for normal extensions of GL and KM. We now introduce pre-filtration as a
more general notion of filtration intended to overcome these shortcomings.

3.3.1. The sim case. It is instructive to begin with the sim-case. The standard al-
gebraic definition of filtration for Heyting algebras is motivated by a simple unique-
ness result: every finite distributive lattice L has a unique expansion to a Heyting
algebra. This is done by defining a Heyting implication on L as

a→ b =
∨

{c ∈ L : a ∧ c ≤ b}.

It is this uniqueness result that allows one to prove that every model of a superintu-
itionistic logic based on a Heyting algebra has a filtration through any subformula-
closed set of formulae Θ. One starts by taking a model (H, V ), then one generates
a bounded distributive lattice from the V [Θ]. The resulting lattice must be finite,
because bounded distributive lattices are locally finite, and it can be expanded to
a Heyting algebra K using the construction just sketched. The inclusion ⊆: K → H
happens to be a bounded distributive lattice embedding that satisfies the BDC→

for the domain consisting of valuations of formulae φ,ψ such that φ→ ψ ∈ Θ.
This suggests a way forward. The correct way of defining a suitable notion of

filtration for frontons is not simply to combine the standard modal and superin-
tuitionistic definitions of filtration. Rather, we first need to look for a suitable
uniqueness result that can be used to generate finite frontons from infinite ones,
then model our new notion of filtration after the properties of this generation pro-
cedure.

Luckily, such a uniqueness result exists.

Theorem 3.13 ([14, Proposition 5]). A Heyting algebra H can be expanded to a
fronton iff the set

Fa := {b ∈ H : b→ a ≤ b}
is a principal proper filter for each a ∈ H. Moreover, there is a unique such
expansion.
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Proof. (⇒) Assume H has the structure of a fronton. It is routine to check that
Fa is a proper filter; we show that it is principal. Now, for each a ∈ H we have
⊠a → a ≤ a ≤ ⊠a, whence ⊠a ∈ Fa. Given b ∈ Fa, we have b ∨ (b → a) ≤ b and
⊠a ≤ b ∨ (b→ a), whence ⊠a ≤ b.

(⇐) Assume that each Fa is a principal proper filter. Define

⊠a :=
∧
Fa.

Thus ⊠a coincides with the generator of Fa. It is routine to check that the result
of expanding H with ⊠ is a frontal Heyting algebra. Moreover, it is also a fronton.
For by ⊠a ∈ Fa we have ⊠a → a ≤ ⊠a. This is to say (⊠a → a) ∧⊠a = ⊠a → a.
Since, clearly, (⊠a→ a) ∧⊠a ≤ a, it follows that ⊠a→ a ≤ a, as desired.

From the arguments just given it follows that every fronton must satisfy the
identity ⊠a =

∧
Fa. This establishes the uniqueness condition in the theorem. □

Corollary 3.14. Every finite Heyting algebra has a unique expansion to a fronton.

Proof. In a finite Heyting algebra H, each filter Fa must contain the meet
∧
Fa.

Thus we can expand H to a fronton using the construction described in the proof
of the (⇐) direction of the previous theorem. By the same theorem, this expansion
is unique. □

There is thus a unique way of expanding a finite distributive lattice to a fronton.
Every finite distributive lattice has a unique expansion to a Heyting algebra, which
in turn has a unique expansion to a fronton. Composing these two construction
yields the mapping we use to model our new notion of pre-filtration.

Definition 3.15 (Pre-filtration, sim case). Let H be a frontal Heyting algebra, V
a valuation on H, and Θ a finite, subformula closed set of formulae. A finite model
(K, V ′), with K ∈ fHA, is called a pre-filtration of (H, V ) through Θ if the following
hold:

(1) The (⊠,→)-free reduct of K is isomorphic to the bounded sublattice of H
generated by a finite superset of V [Θ];3

(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: K → H is a pre-stable embedding satisfying the BDC→

for the set {(V (φ), V (ψ)) : φ → ψ ∈ Θ}, and satisfying the BDC⊠ for the
set {V (φ) : ⊠φ ∈ Θ}.

The only difference between the definitions of filtration and pre-filtration is that
we have dropped the requirement that ⊠ be partially preserved. This is key, as the
construction we use to extract finite frontons, based on the proof of Corollary 3.14,
does not partially preserve ⊠. This illustrates how we can use pre-filtration to get
around problem cases like the space Y in Section 3.2. A pre-stable map need not
preserve the modal relation <, so finite KM-spaces can be surjective images of Y
under pre-stable maps despite the latter containing the <-reflexive point ω0.

The uniqueness result from Theorem 3.13 can be used to establish the existence
of “enough” pre-filtrations, in the following sense.

3Note we now require only that the reduct be generated by a finite superset of V̄ [Θ] rather
than by V̄ [Θ] itself. This slight generalization is intended to make the statements and proofs of

some of the theorems to follow simpler; nothing substantial hinges on this.
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Theorem 3.16. Let H be a fronton. For every model (H, V ) and any subformula-
closed set of formulae Θ, there is a pre-filtration (K, V ′) of (H, V ) through Θ such
that K is a fronton.

Proof. Let K0 be the bounded sublattice of H generated by V [Θ] and let D⊠ :=
{V (φ) : ⊠φ ∈ Θ}. Let a1, . . . , ak enumerate D⊠ and define recursively:

Ci+1 := {(b→ ai+1) ∧⊠ai+1 : b ∈ Ki ∩ [ai+1,⊠ai+1]},

where [a,⊠a] := {b ∈ H : a ≤ b ≤ ⊠a}. Finally, let Ki+1 be the bounded sublattice
of H generated by Ki ∪ Ci.

To get an intuitive grip on this construction, recall [10, Lemma 4] that in any
fronton H the interval [a,⊠a], viewed as a sublattice of H, is a Boolean algebra
where the complement ¬ab of any b ∈ [a,⊠a] is given by

¬ab := (b→ a) ∧⊠a.

Thus, the move from Ki to Ki+1 consists in adding complements to elements of Ki

relative to the interval [ai+1,⊠ai+1], then generating a new distributive lattice.
Since each Ki is finite, it can be viewed as a fronton by defining on it a Heyting

implication ⇝i and a modal operator ⊗i as in the proof of Theorem 3.13. Let
K := Kk and ⊗ := ⊗k. By construction, the inclusion embedding ⊆: K → H
is pre-stable. We show that it satisfies the BDC for (D→, D⊠), where D→ :=
{(V (φ), V (ψ)) : φ→ ψ ∈ Θ}.

Since

a⇝ b :=
∨

{c ∈ K : a ∧ c ≤ b}, a→ b :=
∨

{c ∈ H : a ∧ c ≤ b},

if a → b ∈ V [Θ] ⊆ K, then a → b ≤ a ⇝ b, whence a ⇝ b = a → b given
pre-stability. Now let ai ∈ D⊠. Observe that ⊗i(ai) = ⊠(ai). For note that

⊗iai :=
∧

{b ∈ K : b⇝i ai ≤ ai}, ⊠ai :=
∧

{b ∈ H : b→ ai ≤ ai}.

Since ⊠ai ∈ D⊠ ⊆ K and ⊠ai ⇝i ai ≤ ⊠ai → ai, it follows that ⊗iai ≤ ⊠ai.
Consequently, ⊗iai ∈ Ki ∩ [ai,⊠ai]. Now, ⊗iai ⇝i ai = ai holds because Ki is a
fronton. Moreover, given that ⊠ai, ai,⊠ai → ai ∈ V [Θ], we also have ⊠ai ⇝ ai =
⊠ai → ai = ai. So:

¬ai
⊗iai = (⊗iai ⇝i ai) ∧⊠ai = ai ∧⊠ai = ai,

¬ai
⊠ai = (⊠ai ⇝i ai) ∧⊠ai = ai ∧⊠ai = ai.

Because Boolean complements are unique, it follows that ⊗iai = ⊠ai. By analogous
reasoning we have ⊗iai = ⊗i+1ai. Putting these observations together, we conclude
that ⊗a = ⊠a holds for every a ∈ D⊠, as desired.

Finally, define a valuation V ′ on K by putting V ′(p) = V (p) if p ∈ Θ, arbitrary
otherwise. The resulting model (K, V ′) is a pre-filtration of (H, V ) through Θ. □

The argument just presented is a close adaptation of the proof of [10, Thm. 6],
which is related to a construction used by Muravitsky [27, Thm. 2] to establish the
finite model property for KM.

Despite the weaker definition, pre-filtrations still preserve and reflect the satis-
faction of rules whose premises and conclusions belong to the “filtering set” Θ.
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Theorem 3.17 (Pre-filtration theorem for frontal Heyting algebras). Let H be a
fronton, V a valuation on H, and Θ a finite, subformula-closed set of formulae. If
(K, V ′) is a pre-filtration of (H, V ) through Θ then for every φ ∈ Θ we have

V (φ) = V ′(φ).

Consequently, for every rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆ we
have

H, V |= Γ/∆ ⇐⇒ K′, V ′ |= Γ/∆.

Proof. A straightforward induction on the structure of formulae. □

We conclude with some remarks about the existence of pre-filtrations of frontal
Heyting algebras more generally. Given H, V and Θ as in Definition 3.15, the
expansion construction from Theorem 3.13 can always be used to extract a finite
fronton generated as a bounded sublattice of H by V [Θ]. But of course, in general,
the construction cannot be continued to construct a pre-filtration of (H, V ) based
on K. For if Θ contains (⊠p → p) → p and H is not a fronton, (H, V ) and (K, V ′)
will disagree on whether (⊠p→ p) → p is valid, so (K, V ′) cannot be a pre-filtration
of (H, V ) through Θ.

It thus remains an open question whether the version of Theorem 3.16 obtained
by substituting “frontal Heyting algebra” for “fronton” is true. This is an instance
of a broader problem: it is, in general, not clear how to construct filtrations in
signatures containing multiple non-interdefinable operators.

3.3.2. For Modal Algebras. Let us now turn to the clm case. The key intuition we
appeal to here, which we mentioned already, is that every K4-algebra can be seen
as a bimodal algebra in a signature with an extra modal operator □+, defined as

□+a := a ∧□a.
We have defined pre-filtration for frontal Heyting algebras by means of pre-stable
embeddings, which partially preserve → but not necessarily ⊠. Likewise, to define
pre-filtration for K4-algebra, we use embeddings that partially preserve □+ but not
necessarily □ itself, namely pre-stable embeddings again.

Definition 3.18 (Pre-filtration for K4-algebras). Let M be a K4-algebra, V a val-
uation on M, and Θ a finite, subformula closed set of formulae. A finite model
(N, V ′), with N a K4-algebra, is called a pre-filtration of (M, V ) through Θ if the
following hold:

(1) The □-free reduct of N is the Boolean subalgebra of M generated by a
finite superset of V [Θ];

(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: N → M is a pre-stable embedding satisfying the BDC□

for the set {V (φ) : □φ ∈ Θ}.

One might have thought Item 3 should be strengthened so that ⊆ is also required

to satisfy the BDC□+

for the set D□+

:= {V (φ) : □+φ ∈ Θ}. But this is not really
a strengthening. By the definition of □+, this set is contained in D□ := {V (φ) :
□φ ∈ Θ}. Moreover, by Proposition 3.7, it already follows from Item 3 that ⊆
satisfies BDC□+

for D□, hence for D□+

as well.
As before, the weaker definition does not affect the ability of pre-filtrations to

preserve and reflect the satisfaction of formulae in the filter set Θ.
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Theorem 3.19 (Pre-filtration theorem for K4-algebras). Let M be a K4-algebra, V
a valuation on H, and Θ a a finite, subformula-closed set of formulae. If (N, V ′) is
a pre-filtration of (M, V ) through Θ then for every φ ∈ Θ we have

V (φ) = V ′(φ).

Consequently, for every rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆ we
have

M, V |= Γ/∆ ⇐⇒ N, V ′ |= Γ/∆.

The existence of a pre-filtration of a model based on a K4-algebra through any
subformula-closed set of formulae is an immediate consequence of the existence of
a filtration of that model through that set of formulae, since every filtration is a
pre-filtration.

Theorem 3.20. Let M be a K4-algebra. For every model (M, V ) and any subformula-
closed set of formulae Θ, there is a pre-filtration (N, V ′) of (M, V ).

This result, however, is not strong enough to support the use of pre-filtration
in, say, proofs to the effect that some normal extension of GL has the finite model
property. To that end, we would need to strengthen the consequent to the effect
that N be a Magari algebra. While we were not able to confirm this, we conjecture
that this strengthening of Theorem 3.20 is false. However, later in the paper we
will be able to establish a slightly weaker result (Theorem 6.7), which is nonetheless
strong enough to support finite model property arguments for normal extensions of
GL using pre-filtration.

4. Pre-stable Canonical Rules

We have introduced our notion of pre-filtration. We now turn to the task of
syntactically encoding pre-filtrations through algebra-based rules. When A is an
algebra, for each a ∈ A introduce a fresh propositional variable pa.

Definition 4.1 (Pre-stable canonical rule, sim case). Let H be a finite frontal
Heyting algebra and let D := (D→, D⊠) be respectively a binary and a unary
domain on H. The sim pre-stable canonical rule η(H, D) is defined as the rule Γ/∆,
where

Γ ={p0 ↔ ⊥} ∪ {p1 ↔ ⊤}∪
{pa∧b ↔ pa ∧ pb : a, b ∈ H} ∪ {pa∨b ↔ pa ∨ pb : a, b ∈ H}∪

{pa→b ↔ pa → pb : (a, b) ∈ D→} ∪ {p⊠a ↔ ⊠pa : a ∈ D⊠}
∆ ={pa ↔ pb : a, b ∈ H with a ̸= b}.

Definition 4.2 (Pre-stable canonical rule, clm case). Let M be a finite K4-algebra
and let D be a unary domain on M. The clm stable canonical rule µ(A, D) is
defined as the rule Γ/∆, where

Γ ={p0 ↔ ⊥} ∪ {p1 ↔ ⊤}∪
{pa∧b ↔ pa ∧ pb : a, b ∈M} ∪ {p¬a ↔ ¬pa : a ∈M}∪
{p□+a → □+pa : a ∈M} ∪ {p□a ↔ □pa : a ∈ D}

∆ ={pa : a ∈ A∖ 1}.
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In both cases, a pre-stable canonical rule fully represents the truth functional struc-
ture of an algebra (i.e., the lattice structure of a frontal Heyting algebra and the
Boolean structure of a K4-algebra), but only represents non-truth functional struc-
ture on the distinguished domains. We use the notation ξ(A, D) to refer to either
a sim or a clm pre-stable canonical rule, without specifying which.

Pre-stable canonical rules are useful because they have well behaved refutation
conditions, connected to the pre-filtration construction. The next two results de-
scribe this connection in both its algebraic and dual version. Henceforth, when D
is a pair of domains on an algebra A as above, say that a map h : A → B satisfies
the bounded domain condition for D when it does for both the domains occurring
in D.

Proposition 4.3. Let A be a frontal Heyting or K4-algebra and let ξ(B, D) be a
pre-stable canonical rule of the appropriate kind. Then A ̸|= ξ(B, D) iff there is a
pre-stable embedding h : B → A satisfying the BDC for D.

Proof. We show the sim case only, as the clm case is analogous. (⇒) Suppose
A ̸|= ξ(B, D) and take a valuation V that witnesses this. Define a map h : B → A
by putting h(a) := V (pa). This is a bounded lattice embedding, because the model
(A, V ) satisfies every formula in Γ. For the same reason, it satisfies the BDC for
D. In the case of D→, for (a, b) ∈ D→ note

h(a→ b) = V (pa→b)

= V (pa → pb) By A, V |= pa→b ↔ (pa → pb)

= V (pa) → V (pb)

= h(a) → h(b).

Likewise in the case of ⊠.
(⇐) Let h : B → A be a pre-stable embedding satisfying the BDC for D.

Define a valuation V on A by setting V (pa) := h(a). Because h is pre-stable, the
model (A, V ) satisfies all formulae in the first two lines from the definition of Γ in
Definition 4.1. From the fact that h satisfies the BDC for D, on the other hand, we
can show that the reamining formulae in Γ are satisfied, by essentially reversing the
reasoning summarized in the identities above. Finally, a ̸= b implies A, V ̸|= a↔ b,
so no formula in ∆ is satisfied in (A, V ). We have thus shown that A ̸|= ξ(B, V ). □

Proposition 4.4. Let X be a modalized Esakia or K4-space and let ξ(A, D) be a
pre-stable canonical rule of the appropriate kind. Then X ̸|= ξ(A, D) iff there is a
pre-stable surjection f : X → A∗ that satisfies the BDC for D∗.

4 Moreover, the
same remains true if we let X be a sim- or clm-Kripke frame and substitute A+ for
A∗.

Proof. Follows immediately from Propositions 3.10 and 4.3. □

In view of Proposition 4.4, we adopt the convention of writing a pre-stable canon-
ical rule ξ(A, D) as ξ(A∗, D∗) when working with spaces or Kripke frames. Note
that since any such A is finite, A+ is always defined and equals A∗.

4See the statement of Proposition 3.5 for the definitions of D∗.
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We are now ready to prove the main result that underwrites the usefulness of pre-
stable canonical rules: that every rule is equivalent (over a suitable base system)
to a finite conjunction of pre-stable canonical rules.

Theorem 4.5. Let Γ/∆ be either a sim-rule or clm-rule. The following conditions
hold:

(1) sim case: there is a finite set Φ of sim pre-stable canonical rules based
on frontons, such that a fronton H refutes Γ/∆ iff it refutes some rule
η(K, D) ∈ Φ;

(2) clm case: there is a finite set Φ of clm pre-stable canonical rules such that
a K4-algebra M refutes Γ/∆ iff it refutes some rule η(N, D) ∈ Φ.

Proof. sim case: let M(k) be the cardinality of the free bounded distributive lattice
on k generators. Let M0(k) := M(k) and Mi+1(k) = M(2 ·Mi(k)). We let Φ be
the set of all sim pre-stable canonical rules η(K, D) such that:

(1) K is a fronton generated, as a bounded distributive lattice, by at most
Mn(k) elements, where k = |Sfor(Γ/∆)| and n = |{φ : ⊠φ ∈ Sfor(Γ/∆)}|;

(2) D = (D→, D⊠), where, for some valuation V on K such that K, V ̸|= Γ/∆,
the binary domain D→ consists precisely of the pairs (V (φ), V (ψ)) with
φ → ψ ∈ Sfor(Γ/∆), and the unary domain D⊠ consists precisely of the
elements V (φ) with ⊠φ ∈ Sfor(Γ/∆).

Each algebra K as above must be finite because bounded distributive lattices are
locally finite, and since we have fixed the cardinality of the generators there are only
finitely many such rules η(K, D), up to isomorphism of the underlying algebras.

(⇒) Assume H ̸|= Γ/∆ and pick a witnessing valuation V . Construct a pre-
filtration (K, V ′) of (H, V ) through Sfor(Γ/∆), which is always possible by The-
orem 3.16. In addition, note that the construction used to prove Theorem 3.16
ensures that K can be chosen to meet the cardinality constraints on the generators
above. Use the valuation V ′ to construct D := (D→, D⊠) as above. Since (K, V ′) is
a filtration of (H, V ), the inclusion ⊆: K → H is a pre-stable embedding satisfying
the BDC for D, showing H ̸|= η(K, D). By Theorem 3.17 we have K, V ′ ̸|= Γ/∆, so
η(K, D) ∈ Φ.

(⇐) Assume H ̸|= η(K, D) for some η(K, D) ∈ Φ. Let V be a valuation on K that
can be used to construct D as per the second item above. This can also be seen
as a valuation on H. Moreover, the model (K, V ) is a filtration of (H, V ) through
Sfor(Γ/∆). By Theorem 3.17, it follows that H, V ̸|= Γ/∆.

clm case: the proof is completely analogous, save for some minor adaptations in
the construction of Φ. In this case, we let Φ consist of all clm pre-stable canonical
rules µ(N, D) such that:

(1) N is a K4-algebra generated, as a Boolean algebra, by at most |Sfor(Γ/∆)|
elements;

(2) For some valuation V on N such that N, V ̸|= Γ/∆, the unary domain D
consists precisely of the elements V (φ) with □φ ∈ Sfor(Γ/∆).

Since Boolean algebras are locally finite, each such N is finite, and Φ is finite because
the number of generators has been fixed. □

Note Theorem 4.5 does not imply that every clm rule is equivalent over GL to
finitely many pre-stable canonical rules based on Magari algebras. To establish that
result, we would need a stronger version of Theorem 3.20, establishing the existence
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of enough pre-filtration based on Magari algebras. As anticipated, a result of this
sort holds true, though we will need to go through some theory of monomodal
companions in the next section before we can establish it.

Corollary 4.6. The following conditions hold:

(1) Every sim-rule system is axiomatizable over KM by sim pre-stable canonical
rules based on frontons;

(2) Every clm-rule system above K4 is axiomatizable over K4 by clm pre-stable
canonical rules.

Proof. In either case, take an arbitrary axiomatization of the desired rule system
and use Theorem 4.5 to rewrite it in terms of pre-stable canonical rules. □

The upshot of this section is that, in the right circumstances, we are now enti-
tled to assume without loss of generality that we are always working with pre-stable
canonical rules. The problem of checking whether a given rule is refuted by an alge-
bra has been reduced to the problem of establishing whether pre-stable embeddings
with the relevant properties exist.

5. Monomodal Companions

We now apply pre-stable canonical rules to the theory of monomodal companions
of sim-rule systems.

5.1. Mappings and Translations. Recall that the free Boolean extension of a
Heyting algebra H is the unique Boolean algebra B(H) in which H embeds as a
distributive lattice, such that the image of H under this embedding generates B(H)
as a Boolean algebra [15, Def. 2.5.6, Constr. 2.5.7; 1, Sec. V]. For simplicity, we
will generally identify H with its image in B(H). Note this convention is used in
the definitions to follow.

If H is a frontal Heyting algebra, we define σH by expanding B(H) with the
operation

□a := ⊠Ia,

where

Ia :=
∨

{b ∈ H : b ≤ a}.
By the properties of free Boolean extensions, Ia always exists and indeed belongs
to H. Conversely, if M is a K4-algebra we define ρM as follows. First, define the
quasi-open elements of M

O+(M) := {a ∈M : □+a = a}.
This is a bounded distributive sublattice of M. We let ρM be the result of expand-
ing O+(M) with the operations

a→ b := □+(¬a ∨ b),
⊠a := □a.

Since □+□+a = □+a and □+□□+a = □a for each a ∈ M , both operations are
well defined.

We now give a dual description of these constructions. If X is a modalized
Esakia space, let σX be the ≤-free reduct of X. To emphasize that we view σX as
a modal space, we will denote the remaining binary relation in σX as R instead of
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<. Conversely, let X be a K4-space. Define an equivalence relation on X by putting
x ∽ y iff either x = y or both Rxy and Ryx. Let ϱ be the quotient map induced
by ∽. We define ρX by endowing ϱ[X] with the quotient topology and expanding
the resulting space with the binary relations

ϱ(x) ≤ ϱ(y) : ⇐⇒ R+xy, ϱ(x) < ϱ(y) : ⇐⇒ Rxy.

These definitions do not depend on the choice of x, y: we could have equivalently
defined ϱ(x) ≤ ϱ(y) iff there are z ∽ x and w ∽ y with R+zw, and likewise for <.
These constructions are readily extended to Kripke frames, applying our convention
of regarding a Kripke frame as endowed with the discrete topology.

Proposition 5.1. The identities (σH)∗ = σ(H∗) and (ρM)∗ = ρ(M∗) hold for ev-
ery frontal Heyting algebra H and any K4-algebra M. Moreover, the second identity
remains true if we replace (·)+ for (·)∗, provided ρM is defined.

Proof. Note that B(H) is isomorphic to Clop(H∗), so (σH)∗ = σ(H∗) are isomorphic
as Boolean algebras. Let f : (σH)∗ → σ(H∗) be the bijection determined by the
identity mapping on the Stone space dual to B(H). That Rxy implies Rf(x)f(y)
is obvious. Conversely, assume Rf(x)f(y) and take U ∈ Clop((σH)∗). Suppose
y /∈ U . By the definition of σH,

□U = ⊠
⋃

{V ∈ ClopUp≤(X) : V ⊆ U}.

Since y /∈ U , also
⋃
{V ∈ ClopUp≤(X) : V ⊆ U}, so x /∈ □U . This shows Rxy.

For the second identity, first observe that given x, y ∈ M∗ we have ϱ(x) = ϱ(y)
iff x and y contain the same quasi-open elements from M. Since the quasi-open
elements in a prime filter of M form a prime filter in ρM and every prime filter of ρM
can be extended to a prime filter in M containing it, the map f : ρ(M∗) → (ρM∗)
where f(ϱ(x)) is the prime filter on ρM consisting of all the quasi-open elements
shared by all members of ϱ(x) is a bijection. It should also be clear that f preserves
and reflects ≤. To see that it also preserves and reflects <, let ρ(x), ρ(y) ∈ ρ(M∗)
and suppose ρ(x) < ρ(y). Take a ∈ ρM and suppose a /∈ f(ρ(y)). Then also a /∈
ρ(y), so ⊠a /∈ ρ(x), and in turn ⊠a /∈ f(ρ(x)). The other direction is analogous. □

Remark 5.2. It is important to point out that H+ being well defined does not
guarantee that the identity (σH)+ = σ(H+) holds, even when both sides are well
defined. As we shall see in a moment, σH is always a K4.Grz-algebra, so (σH)+
must be a K4.Grz-frame if defined. However, σ(H+) need not be a K4.Grz-frame,
for it might not be conversely well-founded.

Using this dual description of the mappings σ and ρ, we can prove a few key
facts about them.

Proposition 5.3. The identity ρσH = H holds for every frontal Heyting algebra
H.

Proof. Dually, composing σ with ρ obviously yields the identity mapping. □

Proposition 5.4. There is a modal algebra embedding of σρM into M, for every
K4-algebra M.

Proof. The cluster collapse map ϱ : M∗ → σρM∗ is a surjective bounded morphism,
so its dual is a modal algebra embedding ϱ∗ : σρM → M. □
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Proposition 5.5. Let H and M be a frontal Heyting algebra and a K4-algebra
respectively. Then σH is a K4.Grz-algebra and ρM is a frontal Heyting algebra.
Moreover, if H is a fronton, then σH is a Magari algebra, and if M is a Magari
algebra then ρM is a KM-algebra.

Proof. For a proof of the first part of this proposition, see [14, Thm. 18]. We prove
the dual version of the second part. Let X be a KM-space. Let U ∈ Clop(σX) and
x ∈ max (U). Then ⇓≤U ∈ Clop(σX) and clearly also x ∈ max (⇓≤U). Since ⇓≤U
is a clopen downset, by Proposition 2.8 it follows that x ̸< x, which is to say that
Rx fails. By Proposition 2.8 again, it follows that σX is a GL-space. The last claim
in the proposition proved similarly. □

We can extend both mappings σ and ρ to universal classes by setting

σU := Uni{σH : H ∈ U}, ρV := {ρM : M ∈ V},

whenever U ∈ Uni(fHA) and V ∈ Uni(K4). We also introduce a mapping

τU := {M ∈ K4 : ρM ∈ U}.

The syntactic counterpart of the mappings just introduced is the translation
mapping T : Frmsim → Frmclm defined recursively below.

T (⊤) := ⊤, T (⊥) := ⊥,
T (p) := □p, T (φ ∨ ψ) := T (φ) ∨ T (ψ),

T (φ ∧ ψ) := T (φ) ∧ T (ψ), T (φ→ ψ) := □+(¬T (φ) ∨ T (ψ)),

T (⊠φ) := □T (φ).

T as just defined is equivalent to the translation given in [22, 36], noting that
□+□□+φ ↔ □φ is a theorem of K4. We extend T to a translation between rules
by setting T (Γ/∆) := T [Γ]/T [∆].

The key result required to work with T is the following lemma.

Lemma 5.6. Let φ be a sim-formula and M a K4-algebra. Then ρM |= φ iff
M |= T (φ). Consequently, ρM |= Γ/∆ iff M |= T (Γ/∆) holds for every sim-rule
Γ/∆.

Proof. Straightforward induction on the structure of φ. □

Using T , we define three mappings between lattices of rule systems:

τL := K4⊕ {T (Γ/∆) : Γ/∆ ∈ L}, σL := K4.Grz⊕ τL,

ρM := {Γ/∆ ∈ Rul sim : T (Γ/∆) ∈ M},
for L ∈ NExt(mHC) and M ∈ NExt(K4).

In general, the mappings τ and σ over rule systems come apart. For example
τmHC = K4 ⊂ K4.Grz = σmHC. However, they happen to coincide above KM.

Proposition 5.7. Let L ∈ NExt(KM), which is to say L = KM⊕ Φ for some set of
rules Φ. Then

τL = GL⊕ T [Φ] = σL.
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Proof. It suffices to observe that τL ∈ NExt(GL) whenever L ∈ NExt(KM). To that
end, note

T ((⊠p→ p) → p) := □+(□+(□□+p→ □+p) → □+p).

Now, /□+(□□+p → □+p) implies /□(□□+p → □+p) over K4, which in turn
implies /□+p over GL using the Löb formula. By necessitation and propositional
reasoning it follows that T (/(⊠p→ p) → p)) is a theorem of GL. □

5.2. Main Results. In this section, we give new proofs of the Esakia theorem and
the Kuznetsov-Muravistsky isomorphisms. The next lemma is our main technical
tool.

Lemma 5.8 (Main lemma). Let X be a K4.Grz-space and let Γ/∆ be a clm-rule.
Then X ̸|= Γ/∆ iff σρX ̸|= Γ/∆.

Proof. The right-to-left direction is a consequence of Proposition 5.4 and the fact
that the validity of rules is preserved under subalgebras. To prove the converse,
by Theorem 4.5 we may assume wlog that Γ/∆ is a clm pre-stable canonical rule
µ(F,D) for some finite K4-space F. So suppose X ̸|= µ(F,D). Then there is a pre-
stable surjection f : X → F satisfying the BFC for D. We construct a pre-stable
surjection g : σρX → F satisfying the BFC for the same domain, which will show
σρX ̸|= F.

Let C be a cluster in F and enumerate it C := c1, . . . , cn. For each ci ∈ C,
consider the preimage f−1(ci) ⊆ X and let Mi := max (f−1(ci)). Now, f−1(ci) ∈
Clop(X), so Mi is closed by Proposition 2.6. Moreover, since f preserves R+,
we know that f−1(ci) does not cut clusters, so neither does Mi. Consequently,
−ϱ[Mi] = ϱ[−Mi], which implies that ϱ[Mi] is closed as well because σρX has the
quotient topology.

We now find disjoint clopens U1, . . . , Un ∈ Clop(σρX) such that ϱ[Mi] ⊆ Ui

for each i, and
⋃

i Ui = ϱ[f−1(C)]. Let k ≤ n and assume Ui has been defined

for each i < k. If k = n, put Un := ϱ[f−1(C)] ∖
(⋃

i<k Ui

)
and we are done.

Otherwise set Vk := ϱ[f−1(C)] ∖
(⋃

i<k Ui

)
and observe that Vk contains each

ϱ[Mi] for k ≤ i ≤ n. By the separation properties of Stone spaces, for each i with
k < i ≤ n there is some Uki

∈ Clop(σρX) with ϱ[Mk] ⊆ Uki
and ϱ[Mi] ∩ Uki

= ∅.
Then set Uk :=

⋂
k<i≤n Uki ∩ Vk.

We can now define a map

gC : ϱ[f−1(C)] → C,

z 7→ xi ⇐⇒ z ∈ Ui.

Since C is a cluster, gC preserves R+. Further, it is continuous because each Ui is
clopen. Having defined gC for all clusters C ⊆ F , we can then define the desired
g : σρX → F by setting

g(ϱ(z)) :=

{
f(z) if f(z) does not belong to any proper cluster,

gC(ϱ(z)) if f(z) ∈ C for some proper cluster C ⊆ F.

Since both f and each gC are continuous and preserve R+, it follows that g is a
pre-stable map.

We now show that g satisfies the BFC for D. Let d ∈ D. For the “back”
part, let x ∈ X and suppose there is y ∈ d with Rg(ϱ(x))y. By construction,
g(ϱ(x)) belongs to the same proper or improper R+-cluster as f(x), so we also
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have Rf(x)y. Since f satisfies the BFC for D, there must be z ∈ X with Rxz
and f(z) ∈ d. By Proposition 2.7, wlog, we may assume that z ∈ max (f−1(f(z))).
But by construction this implies g(ϱ(z)) = f(z). Since ϱ preserves R, we have
Rϱ(x)ϱ(z), and we have found our desired witness.

For the “forth” part, let d ∈ D, let x ∈ X and suppose there is y ∈ X with
g(ϱ(y)) ∈ d and Rϱ(x)ϱ(y). Since ϱ reflects R, we also have Rxy. Moreover,
g(ϱ(y)) and f(y) belong to the same cluster, whence ⇑R ∩ f−1(d) ̸= ∅. Since f
satisfies the BFC for D, there must be some z ∈ d such that f(x)z. But now
f(x) and g(ϱ(x)) also belong to the same cluster, whence Rg(ϱ(x))z. We have thus
shown that g satisfies the BFC for D. □

Theorem 5.9 (Skeletal generation theorem). Every universal class of K4.Grz-
algebras is generated by its skeletal elements. That is, U = σρU holds for every
universal class U of K4.Grz-algebras.

Proof. By Lemma 5.8, ThR(U) = ThR(σρU), so U = σρU follows using Theo-
rem 2.2. □

This was the challenging part of the argument for our main results. The rest of
the argument consists of routine reasoning, which we repeat here for completeness.
To begin with, we can now prove that the syntactic and semantic versions of the
maps σ, τ and ρ correspond to one another, in the following sense.

Lemma 5.10. Let L ∈ NExt(mHC) and M ∈ NExt(K4). Then

(1) Alg(σL) = σAlg(L);
(2) Alg(τL) = τAlg(L);
(3) Alg(ρM) = ρAlg(M);

Proof. (1) In view of Theorem 5.9, it suffices to show that Alg(τL) and τAlg(L)
have the same skeletal elements. So let M be a skeletal K4.Grz algebra. Assume
M ∈ σAlg(L). Since σAlg(L) is generated by {σH : H ∈ Alg(L)} as a universal
class, by Proposition 5.3 and Lemma 5.6 it follows that M |= T (Γ/∆) for every
Γ/∆ ∈ L. This implies M ∈ Alg(σL). Conversely, assume M ∈ Alg(σL). Then
M |= T (Γ/∆) for every Γ/∆ ∈ L. By Lemma 5.6, this is equivalent to ρM ∈ Alg(L),
so M = σρM ∈ σAlg(L).

(2) If M is a K4-algebra, then M ∈ Alg(τL) iff M |= T (Γ/∆) for all Γ/∆ ∈ L iff
ρM |= Γ/∆ for all Γ/∆ ∈ L iff ρM ∈ Alg(L) iff M ∈ ρAlg(L).

(3) Let H be a frontal Heyting algebra. If H ∈ ρAlg(M), then H = ρM for
some M ∈ Alg(M). It follows that M |= T (Γ/∆) whenever T (Γ/∆) ∈ M, and by
Lemma 5.6 in turn H |= Γ/∆. So, H ∈ Alg(ρM). Conversely, if ρAlg(M) |= Γ/∆,
then by Lemma 5.6 Alg(M) |= T (Γ/∆), hence Γ/∆ ∈ ρM. This implies Alg(ρM) ⊆
ρAlg(M). □

The result just established leads to a purely semantic characterization of mono-
modal companions.

Lemma 5.11. Let L ∈ NExt(mHC) and M ∈ NExt(K4). Then M is a monomodal
companion of L iff Alg(L) = ρAlg(M).
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Proof. If L = ρM, then Alg(L) = ρAlg(M) by Lemma 5.10. Conversely, assume
Alg(L) = ρAlg(M). By Proposition 5.4, if H ∈ Alg(L), then σH ∈ Alg(M). So,
Γ/∆ ∈ L iff T (Γ/∆) ∈ M. □

Now to the main results of this section. First, we prove that the monomodal
companions of any sim-rule system form an interval.

Theorem 5.12 (Interval theorem). Let L ∈ NExt(mHC). The monomodal compan-
ions of L form an interval in NExt(K4), where the least and greatest companions
are given by τL and σL.

Proof. By Lemma 5.10, it suffices to show that M is a monomodal companion of L
iff σAlg(L) ⊆ Alg(M) ⊆ τAlg(L). Assume M is a monomodal companion of L. By
Lemma 5.11 we have Alg(L) = ρAlg(M), so clearly Alg(M) ⊆ τAlg(L). To see that
σAlg(L) ⊆ Alg(M), it suffices to show that every skeletal element of σAlg(L) belongs
to Alg(L). Let M ∈ σAlg(L) be skeletal. then ρM ∈ Alg(L) by Lemma 5.6. So,
there must be N ∈ Alg(M) such that ρM = ρN. This implies σρN = σρM = M .
By Proposition 5.4, we conclude M ∈ Alg(M).

Conversely, assume σAlg(L) ⊆ Alg(M) ⊆ τAlg(L). By Proposition 5.4, it follows
that ρσAlg(L) = Alg(L), so ρAlg(M) ⊇ Alg(L). But by the definitions of ρ, τ we have
ρAlg(M) = ρτAlg(L), so also ρAlg(M) ⊆ Alg(L). By Lemma 5.11, it follows that M is
a monomodal companion of L. □

Second, we prove the following analog of the Blok-Esakia theorem, which yields
the Kuznetsov-Muravitsky isomorphism as a special case. It was announced by
Esakia [14]. We refer to it as an Esakia theorem.

Theorem 5.13 (Esakia theorem for sim-rule systems). The map σ and the re-
striction of ρ to NExt(K4.Grz) are mutually inverse complete lattice isomorphisms
between NExt(mHC) and NExt(K4.Grz).

Proof. It suffices to show that the semantic maps σ : Uni(fHA) → Uni(K4.Grz)
and ρ : Uni(K4.Grz) → Uni(fHA) are complete lattice isomorphisms and mutual
inverses. Both maps are evidently order-preserving, and preservation of infinite
joins follows from Lemma 5.6. Let U ∈ Uni(K4.Grz). Then U = σρU by Theo-
rem 5.9, so σ is surjective and a left inverse of ρ. If V ∈ Uni(fHA), then ρσU = U
by Proposition 5.3, so ρ is surjective and a left inverse of σ. Thus, σ and ρ are
mutual inverses, and therefore must both be bijections. □

Corollary 5.14 (Kuznetsov-Muravitsky isomorphism for sim-rule systems). The
restriction of σ to NExt(KM) and the restriction of ρ to NExt(GL) are mutually
inverse complete lattice isomorphisms between NExt(KM) and NExt(GL).

Proof. The corollary follows from the observation that σKM = GL. We know that
σKM ⊆ GL from Proposition 5.7. For the other direction, it is enough to observe
that every skeletal GL-space is of the form σX for some KM-space X. □

We note that both Theorem 5.13 and Corollary 5.16 remain true when restricted
to lattices of logics only.

Corollary 5.15 (Esakia theorem for sim-logics). The restriction of the mappings
σ and ρ to NExtL(mHC) and NExtL(K4.Grz) respectively are mutually inverse
complete lattice isomorphisms between NExtL(mHC) and NExtL(K4.Grz).
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Proof. By construction, σ and ρ preserve the property of being a logic. Given
Theorem 5.13, the restrictions of σ and ρ to logics are mutual inverses, so it suffices
to show that they commute with meets and joins. For joins, this is obvious, as the
join of two logics is a logic. For meets, we show that σ commutes with Taut. For if
this condition holds, we may reason as follows:

σ(L⊗ExtL(mHC) L
′) = σ(Taut(L⊗Ext(mHC) L

′)) by Proposition 2.1

= Taut(σ(L⊗Ext(mHC) L
′))

= Taut(σL⊗Ext(mHC) σL
′) by Theorem 5.13

= σL⊗ExtL(mHC) σL
′. by Proposition 2.1.

Indeed, since σ is order-preserving and Taut(L) ⊆ L we have σTaut(L) ⊆ σL. Since
Taut is also order-preserving and Taut(σTaut(L)) = σTaut(L), also σTaut(L) ⊆
Taut(σL). Likewise, ρTaut(M) ⊆ Taut(ρM) for every M ∈ NExt(K4). Together, the
last two claims imply σL ⊆ σTaut(L). □

Corollary 5.16 (Kuznetsov-Muravitsky isomorphism). The restriction of σ to
NExtL(KM) and the restriction of ρ to NExtL(GL) are mutually inverse complete
lattice isomorphisms between NExtL(KM) and NExtL(GL).

Proof. Follows from Corollary 5.15 the same way Corollary 5.16 follows from The-
orem 5.13. □

6. Translations of Pre-Stable Canonical Rules

In this last section, we characterize the translation T in terms of pre-stable
canonical rules. We then apply our characterization to establish a few more re-
sults: the announced strengthening of Theorem 3.20 concerning pre-filtrations of
Magari algebras, and two preservation theorems concerning the mapping σ. For
the remainder of the paper, we focus only on sim-rule systems above KM, since our
axiomatizations in terms of sim pre-stable canonical rules do not extend below KM.

6.1. Classicization and the Rule Translation Lemma. The main difference
between sim and clm pre-stable canonical rules is that the former have two domains,
while the latter have one. We can get by with having a single domain in the clm
case because □+ is a compound operator, defined in terms of □. When constructing
a pre-filtration of a clm-rule Γ/∆, if □+φ ∈ Sfor(Γ/∆), then also □φ ∈ Sfor(Γ/∆).
So, the way we make sure that □+φ receives the same valuation in the filtration as
in the original model is simply by making sure that □φ does.

The translation T associates → with □+ and ⊠ with □. However, → is not
defined in terms of ⊠. We thus need to keep track of when → and ⊠ need to be
fully preserved separately; syntax is of no help. This generates a problem: how do
we turn the two domains in η(F,D) to turn the latter into a clm pre-stable canonical
rule, given that there are no obvious connections between the two domains?

The solution to this problem is to restrict attention to a particular kind of sim
pre-stable canonical rules, in which D≤ has a natural embedding into D<. The
correspondence ensures that when checking the refutability of such rules, we need
only verify that the witnessing pre-stable surjection satisfies the BFC< for D<.

Definition 6.1. A sim pre-stable canonical rule η(H, D) is classicizable when
(a, b) ∈ D→ implies a→ b ∈ D⊠.
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Dually, η(F,D) is classicizable when β(a)∩−β(b) ∈ D→ implies ⇓≤(β(a)∩−β(b)) ∈
D<.

Lemma 6.2. Let X,Y be GL-spaces and let f : X → Y be a pre-stable map satisfying
the BFCR for a domain of the form E := {⇓R+d : d ∈ D}, with D any domain on
Y. Then f also satisfies the BFCR for D. Moreover, the claim remains true if we
let X,Y be KM-spaces and substitute < for R and ≤ for R+.

Proof. Take d ∈ D and x ∈ X. For the “back” condition, suppose there is y ∈ d
with Rf(x)y. Then y ∈ ⇓R+d. Since f satisfies the BFC for E, there must be
z ∈ f−1(⇓R+d) with Rxz. By the properties of GL-spaces, we may assume z is
maximal in f−1(⇓R+d). By Lemma 3.11 we have

max (f−1(⇓R+d)) = f−1(max (⇓R+d))

= f−1(max (d))

⊆ f−1(d),

and we are done.
For the “forth” condition, suppose there is y ∈ f−1(d) with Rxy. Then y ∈

f−1(⇓R+d). Since f satisfies the BFC for E, there must be some z ∈ ⇓R+d such
thatRf(x)z. By the properties of GL-spaces, we may assume that z ∈ max (⇓R+d) =
max (d) ⊆ d, and we are done. The argument is completely analogous in the case
of KM-spaces. □

Lemma 6.3. Let η(F,D) be a classicizable sim pre-stable canonical rule. A KM-
space X refutes η(F,D) iff there is a pre-stable surjection f : X → F satisfying the
BFC< for D<.

Proof. The left-to-right direction is obvious and the right-to-left direction follows
from Lemma 6.2. □

We can always restrict attention to classicizable rules without loss of generality.

Theorem 6.4. Every sim-rule Γ/∆ is equivalent, over KM, to finitely many classi-
cizable sim pre-stable canonical rules.

Proof. The argument is essentially the same as that given in Theorem 4.5, with the
following caveat. At the step where we filtrate a countermodel of Γ/∆ to construct
a pre-stable canonical rule, using the construction from Theorem 3.16, start out by
defining

D⊠ := {V (φ) : ⊠φ ∈ Θ} ∪ {V (φ→ ψ) : φ→ ψ ∈ Sfor(Γ/∆)}.
Then run the rest of the construction exactly the same way. The rule obtained at
the end is evidently classicizable. □

We can now characterize the translation T . Let η(F,D) be a classicizable sim
pre-stable canonical rule. We define the classicization µ◦(F,D) of η(F,D) by setting

µ◦(F,D) := µ(σF, D◦),

where D◦ := D<.
We call a clm pre-stable canonical rule ξ(F, D) classicized when F is a skeletal

GL space and every d ∈ D is a downset. It should be clear that ξ(F, D) is classicized
precisely when it is the classicization of some sim pre-stable canonical rule.
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Lemma 6.5 (Rule translation lemma). Let η(F,D) be a classicizable sim pre-stable
canonical rule and let X be a GL-space. Then X |= µ◦(F,D) iff X |= T (η(F,D)).

Proof. We give only a proof sketch; more details can be found in [4], where a
similar result is proved in a different signature. (⇒) Suppose X ̸|= T (η(F,D)).
By Lemma 5.6 this implies ρX ̸|= η(F,D). So, there is a pre-stable surjection
f : ρX → F satisfying the BFC for D≤ and D<. Composing f and the cluster
collapse map ϱ : X → ρX yields a pre-stable surjection f ◦ ϱ : X → σF that the
BFC for D.

(⇐) Suppose X ̸|= µ◦(F,D). Then there is a pre-stable surjection f : X → σF
that satisfies the BFC for D. We define a map g : ρX → F by setting g(ϱ(x)) :=
f(x). This is well defined: since σF is skeletal, elements of X that belong to the
same cluster have the same image under f . Clearly, g is pre-stable, surjective, and
satisfies the BFC< for D<. By Lemma 6.2, it also satisfies the BFC≤ for D≤. □

6.2. Application: pre-filtrations of Magari algebras. We now establish the
strengthening of Theorem 3.20 announced earlier. We will build pre-filtrations of
models based on Magari algebras by taking a detour through frontons. Given a
valuation V with the right shape on a Magari algebra M, we will first extract a
finite fronton from ρM, then define a pre-filtration of (M, V ) based on σρM.

Lemma 6.6. Let M,N be Magari algebras. Let E ⊆ N be such that if a ∈ E,
then a =

∧
{¬ai ∨ aj : (i, j) ∈ Ia} for some finite Ia with ai, aj ∈ O+(M) for every

(i, j) ∈ Ia. Let

D :=
⋃
a∈E

{¬ai ∨ aj : (i, j) ∈ Ia}.

If a pre-stable embedding h : N → M satisfies the BDC□ for D, then it satisfies the
BDC□ for E as well.

Proof. Let a ∈ E and reason as follows:

h(□a) = h(□
∧

{¬ai ∨ aj : (i, j) ∈ Ia}

= h(
∧

{□(¬ai ∨ aj) : (i, j) ∈ Ia}

=
∧

{h(□(¬ai ∨ aj)) : (i, j) ∈ Ia}

=
∧

{□h(¬ai ∨ aj) : (i, j) ∈ Ia}

= □
∧

{h(¬ai ∨ aj) : (i, j) ∈ Ia}
= □h(a).

□

Theorem 6.7. Let M be a Magari algebra. If M ̸|= Γ/∆, then there is a model
(M, V ) such that refutes Γ/∆ and has a pre-filtration (N, V ′) through Sfor(Γ/∆)
based on a Magari algebra N.

Proof. Assume M ̸|= Γ/∆. Then, by Lemma 5.8, also σρM ̸|= Γ/∆. Let W be
a valuation on σρM witnessing this fact. Define a valuation V on M by setting
V (p) := ϱ−1(W (p)) for all p ∈ Prop (recall that, by duality, ϱ−1 coincides with the
canonical embedding of σρM into M.)
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We claim that every a ∈ V [Sfor(Γ/∆)] is of the form

a =
∧

(i,j)∈Ia

¬ai ∨ aj ,

with each Ia finite and ai, aj ∈ O+(M) for each (i, j) ∈ Ia. This follows from the
fact that σρM is skeletal and every element of V [Sfor(Γ/∆)] is of the form ϱ−1(b)
for some b ∈ σρM. We fix one such decomposition for every a ∈ V [Sfor(Γ/∆)].

Now, define:

Ba := {ai, aj : (i, j) ∈ Ia}, Ca := {¬ai ∨ aj : (i, j) ∈ Ia},
B := {Ba : a = V (φ), φ ∈ Sfor(Γ/∆)}, C := {Ca : a = V (φ), φ ∈ Sfor(Γ/∆)},

S⊙
a :=

⋃
{⊙(¬ai ∨ aj) : (i, j) ∈ Ia} for ⊙ ∈ {□+,□},

S⊙ :=
⋃

{S⊙
a : a = V (φ), and ⊙φ,φ ∈ Sfor(Γ/∆)} for ⊙ ∈ {□+,□}.

Think of each a as constructed from quasi-opens in three steps. We start from the
quasi-open “building blocks” of a. These are the elements of Ba. Then, the index
set Ia gives instructions on how to combine the quasi-open building blocks into
into cells, where the cells are elements of the form ¬ai ∨ aj with (i, j) ∈ Ia. These
are the elements of Ca. Finally, the cells are combined via conjunction to obtain
a. With this picture in mind, each set S⊙

a contains all the ⊙-necessitations of the
cells of a. We put in S⊙ precisely the ⊙-necessitated cells of those elements a with
⊙a ∈ V [Sfor(Γ/∆)].

Let A := B ∪ S□+ ∪ S□ and for a ∈ V [Sfor(Γ/∆)] define

D→
a := {(ai, aj) : (i, j) ∈ Ia},

D⊠
a := {□+(¬ai ∨ aj) : (i, j) ∈ Ia},

D→ :=
⋃

{D→
a : a = V (φ) and □φ,φ ∈ Sfor(Γ/∆)},

D⊠ :=
⋃

{D⊠
a : a = V (φ) and □φ,φ ∈ Sfor(Γ/∆)}.

Requiring □φ,φ ∈ Sfor(Γ/∆) in the definition of D→, instead of □+φ,φ, ensures
that □+(¬ai ∨ aj) ∈ D⊠ iff (ai, aj) ∈ D→; this will be important later.

We use the construction from the proof of Theorem 3.16 to construct a finite
fronton K with the following properties:

(1) K is a bounded sublattice of ρM generated by a finite superset of A;
(2) The inclusion embedding ⊆: K → ρM satisfies the BDC forD := (D→, D⊠).

To do this, we enumerate D⊠ := b1, . . . , bn and construct a finite sequence (K0, . . . ,
Kn) of bounded sublattices of ρM. Here K0 is the bounded sublattice of ρM
generated by A and Ki+1 is obtained from Ki by adding complements in the Boolean
sublattice [bi+1,⊠bi+1] to all elements of Ki, then generating a bounded sublattice
of ρM from the result.

The inclusion embedding witnesses ρM ̸|= η(K, D). By choice of D, moreover,
η(K, D) is classicizable. So, by Lemma 6.5, σρM ̸|= µ◦(K, D). Let h : σK → σρM
be a pre-stable embedding witnessing this fact. Since σρM is a subalgebra of M,
this yields a pre-stable embedding k : σK → M that satisfies the BDC for D◦.

Define a valuation V ′ on σK by putting V ′(p) = k−1(V (p)) when p ∈ Sfor(Γ/∆),
and arbitrary otherwise. Note that σK is generated by a finite superset of the set
V ′[Sfor(Γ/∆)] as a Boolean algebra. Consider the domain E := {V (φ) := □φ ∈
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Sfor(Γ/∆)}. Note a ∈ E implies a =
∧
U for some U ⊆ D. So, by Lemma 6.2,

k satisfies the BDC for E. We have thus established that the model (K, V ′) is a
pre-filtration of (M, V ) through Sfor(Γ/∆). □

The result just established allows us to axiomatize every clm-rule system above
GL entirely in terms of classicized pre-stable canonical rules.

Theorem 6.8. Every clm-rule Γ/∆ is equivalent, over GL, to finitely many classi-
cized clm pre-stable canonical rules.

Proof. Consider all the pre-filtrations (K, V ′) of countermodels (M, V ) of Γ/∆ that
can be obtained via the construction used in the previous theorem, identified up
to isomorphism. Let Φ be the corresponding set of clm pre-stable canonical rules
µ◦(K, D), with D := (D⊠, D→). By choice of D⊠, D→, the rule η(K, D) is classi-
cizable, hence µ◦(K, D) is well defined.

By the properties of pre-filtration, a Magari algebra M refutes Γ/∆ iff it refutes
some µ◦(K, D) ∈ Φ. By compactness, then, there must be a finite subset Ψ ⊆ Φ
such that a Magari algebra M refutes Γ/∆ iff it refutes some µ◦(K, D) ∈ Ψ. □

Note that the proof just given is less constructive than that of Theorem 4.5,
in that we are not able to explicitly give an upper bound to the size of Ψ. This
is because, in the proof of Theorem 6.7, the size of the set generating K depends
not only on Sfor(Γ/∆), but also on properties of the specific countermodel we are
pre-filtrating.

6.3. Application: Preservation Results. In this last section, we prove that the
mapping σ, above KM, preserves Kripke completeness and the finite model property.

Lemma 6.9. Let X be a Kripke frame for a sim-logic L ∈ NExt(KM). Then σX is
a Kripke frame for σL.

Proof. By Lemma 5.6, σX validates every rule T (Γ/∆) for Γ/∆ ∈ L, and by Propo-
sition 2.9 it is also a GL-frame. Given Proposition 5.7, this suffices to conclude that
σX is a Kripke frame for σL. □

Theorem 6.10 (Cf. [30, Prop. 23]). Let L ∈ NExt(KM).

(1) L is Kripke complete iff τL is Kripke complete.
(2) L has the finite model property iff τL has the finite model property.

Proof. Recall that τ and σ coincide above KM and GL (Proposition 5.7). So, it
suffices to prove the version of the theorem obtained by substituting σ for τ.

Kripke completeness. (⇐) Assume σM is Kripke complete. Suppose L ̸⊢ Γ/∆.
Then σL ̸⊢ T (Γ/∆). So, there is a Kripke frame X for σL such that X ̸|= T (Γ/∆).
By Lemma 5.6, we have ρX ̸|= Γ/∆. Since, by Lemma 5.6 once more, ρX is a
Kripke frame for L, we are done.

(⇒) It suffices to show that for every clm pre-stable canonical rule µ(F,D), if
σL ̸⊢ µ(F,D), then there is a Kripke frame for σL that refutes µ(F,D). So suppose
σL ̸⊢ µ(F,D). Then there is a modal space X for σL that refutes µ(F,D). By
Theorem 6.8, there is a finite set Φ of classicized clm pre-stable canonical rules
whose conjunction is equivalent to µ(F,D) over GL. Since X is a GL-space, there
must be some µ◦(G,E) ∈ Φ with X ̸|= µ◦(G,E). By Lemma 6.5 and Lemma 5.6,
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it follows that ρX ∈ Spa(L) refutes η(G,E). Since L is Kripke complete, there is a
Kripke frame Y for L that refutes η(G,E). Then σY is a Kripke frame for σL, by
Lemma 6.9. By Lemma 6.5 and Lemma 5.6 once more, we have σY ̸|= µ◦(G,E),
which in turn implies η(F,D).

For the finite model property, we reason exactly as we just did, noting that if a
clm Kripke frame X is finite, then so is ρX, and a sim Kripke frame Y is finite only
if σY is. □

7. Conclusion

In this paper we developed the technique of pre-stable canonical rules for the
Kuznetsov–Muravitsky system KM and classical modal logics above K4. We applied
these rules to obtain alternative proofs of the Kuznetsov–Muravitsky isomorphism
and the Esakia theorem, as well as of some preservation results.

There are several possible directions for further research. One would be to inves-
tigate the impact that the technique of pre-stable canonical rules could have on the
logic KM. One could try to develop a theory of pre-stable logics for KM, in analogy
with the theory of stable logics from [2, 3]. Similarly, it would be interesting to
obtain concrete axiomatizations of extensions of KM via pre-stable canonical rules.

It would also be natural to explore the potential impact of the method of pre-
stable canonical rules on other intuitionistic modal logics. The technique of stable
canonical rules for intuitionistic modal logics has already been applied by [23] and
[26]. However, pre-stable canonical rules might be applicable in cases where stable
canonical rules are not—for example, in certain logics that resemble KM. We leave
this as an open-ended question for future work.

Finally, it be would interesting to explore whether algebra-based rules can be
developed for all extensions of mHC, as opposed to only extensions of KM. This would
allow us to extend the preservation results from Section 6 to extensions of mHC.
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