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1. Introduction

Consider the following sentences:

(1) No country has all five of Earth’s climate zones.
(2) In 1783, no country had all five of Earth’s climate zones.
(3) Had territories west of the Mississippi not been colonized, no country would

have had all five of Earth’s climate zones.
(4) With the exception of the United States, no country has all five of Earth’s

climate zones.

In fact, the United States has all five of Earth’s climate zones. That makes (1)
false. But no other country enjoys this much climate diversity, which makes (4)
true. Moreover, dry climates in North America only occur west of the Mississippi
River, which the 1783 Treaty of Paris identified as the western boundary of the
United States. That makes (2) and (3) also true.

A natural explanation of the truth of (2) despite the falsity of (1) consists in the
claim that (1) expresses a temporary falsehood : a proposition that is false, but not
eternally false. This proposition is false now, but was not false in 1783. Likewise, we
can explain the truth of (3) despite the falsity of (1) by claiming that (1) expresses
a contingent falsehood : a proposition that is false, but could have been true. This
proposition is actually false, but would have been true had territories west of the
Mississippi not been colonized.

The key insight that truth can vary across times and worlds is at the heart of
mature research programs in philosophical logic, centered on the study of tense and
modal logics. In these traditions, temporal and modal reasoning are formalized
by means of sentential operators, regimenting natural language expressions like
‘always,’ ‘in 2001,’ ‘necessarily,’ and ‘had territories west of the Mississippi not
been colonized.’ The logic of modal and tense operators is by now well understood,
and tense and modal logic serve as rigorous frameworks for formalizing a number
of philosophical debates concerning time and modality.

The superficial similarity of (4) with (2) and (3) suggests a parallel explanation
of the variation in truth value between (1) and (4). The thought here is that
the falsehood expressed by (1) is not only temporary and contingent, but also
quantificationally relative: it is false, though not false at or relative to all domains
of quantification. In particular, this proposition is true relative to the domain of
countries other than the United States.

Despite the natural parallel, the idea that truth is quantificationally relative
has received virtually no attention. This paper is part of a larger project that
aims to change this. Here, I focus on the problem of giving the idea solid formal
foundations, comparable to what the frameworks of modal and tense logic are to
contingent and temporary truth.

Let me unpack the parallel further. Let Temporalism be the thesis that there are
temporary truths—truths that are not always true—and let Modalism be the thesis
that there are contingent truths—truths that are not necessarily true. Since the
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negation of a temporary truth is a temporary falsehood, Temporalism is equivalent
to the thesis that there are temporary falsehoods. Likewise, Modalism is equivalent
to the thesis that there are contingent falsehoods. Thus (1)—(3), if the explanations
given in the previous paragraphs are correct, witness the truth of both Temporalism
and Modalism. Accordingly, let us call these explanations the temporalist and
modalist explanations of the truth values of (1)—(3).

Let me be clear about what Temporalism and Modalism say, as I understand
them. I take the glosses of Temporalism and Modalism just given to be shorthands
for the following higher-order generalizations.1

Temporalism: ∃p(p ∧ S¬p).
Modalism: ∃p(p ∧ ♢¬p).
Here ‘S’ means ‘sometimes’ (the dual of ‘always’) and ♢ means ‘possibly.’ Thus
(Temporalism) and (Modalism) assert, respectively, the non-triviality of tense and
modal operators, where an operator is non-trivial when it can turn a truth into a
falsehood (or vice versa).2

It is helpful to contrast these explanations to another sort of account, common
among a family of reductionist views about tense and modality. On this alternative
account, somewhere in the syntax of (1), there are covert occurrences of variables
ranging over times and worlds. Modifiers like ‘in 1783’ and ‘had territories west
of the Mississippi not been colonized’ work by binding and valuing such variables.
When these variables are not bound, they receive their value from the context of
utterance. Let us call this explanation the reductionist explanation.3

Call a country climate diverse when it has all five of Earth’s climate zones. On
the reductionist explanation, since the variables over times and worlds that occur
covertly in (1) are not bound, (1) expresses the proposition that no country is
climate diverse in 2026 at the actual world. This proposition is not only false, but
eternally and necessarily so. On the other hand, covert time variables in (2) are
bound by ‘in 1783’ in (2), so that (2) expresses the proposition that no country
was climate diverse in 1783 (at the actual world). Likewise, covert world variables
in (1) are bound by ‘had territories West of the Mississippi not been colonized’
in (3), so that (3) expresses the proposition that no country is climate diverse (in
2026) at the counterfactual situation territories west of the Mississippi have not
been colonized, where the latter is rigidly specified. These propositions, too, are
eternally and necessarily true.

Consequently, on the reductionist explanation, the falsity of (1) alongside the
truth of (2) and (3) does not license the generalizations Temporalism and Modalism.

1As is customary in the higher-order metaphysics literature, I adopt the convention of pro-
nouncing higher-order quantification using English expressions that sound like first-order quan-

tification over properties and propositions. This pronunciation convention should be taken to
indicate a reductionist attitude towards higher-order quantification.

2Temporalism and Modalism resemble but are subtly distinct from a number of views falling

under the same label in the literature. There are well established views in the literature that
superficially resemble Temporalism and Modalism, but are formulated in terms of first-order

quantification over propositions instead of quantification in sentence position. See, for example,
Kaplan [1989]; Lewis [1980]; Brogaard [2012]; Schaffer [2012]. Prior and Fine [1977] endorse both
Temporalism and Modalism, but use these labels to refer to stronger theses that, in addition,
entail that the operators S and ♢ cannot be reduced to quantification over times and possible

worlds. To my knowledge, Temporalism as understood here is only discussed in Bacon [2018];
Dorr and Goodman [2020], whereas Modalism is not discussed as a “free-standing” thesis at all.

3See, e.g., Mellor [1981]; [Sider, 2001, Ch. 2.1] and Schaffer [2012].



4 ANTONIO MARIA CLEANI

Due to variable binding, the embedded occurrences of (1) in (2) and (3)—if they
express a proposition at all—do not express the same proposition as (1) does when
it occurs unembedded. The existence of temporary and contingent falsehoods does
not thereby follow on the reductionist account.

Return now to the temporalist and modalist explanations. There is a completely
analogous story we can tell about why (1) is false and (4) is true. We can say that
(1) expresses—for lack of a better term—a quantificationally relative falsehood : a
proposition that is false, but not false relative to all domains of quantification. This
proposition in fact false, but it is true relative to the restricted domain of countries
other than the United States. As for tense and modality, so for quantifier domain
specification.

Let Quantificationalism be the thesis that there are quantificationally relative
truths—truths that are not true relative to all domains of quantification. Since the
negation of a quantificationally relative truth is a quantificationally relative false-
hood, Quantificationalism is equivalent to the claim that there are quantificationally
relative falsehoods. On the explanation just given—call it the quantificationalist
explanation—(1) and (4) witness the truth of Quantificationalism.

Continuing the analogy with Temporalism and Modalism, I take the gloss of
Quantificationalism just given to be a shorthand for the following higher-order
generalization.

Quantificationalism: ∃p(p ∧ ♦¬p).

Here ♦ is a (primitive) sentential operator regimenting the notion of truth at
some domain of quantification. Thus Quantificationalism asserts the non-triviality
“quantificational operators,” which, intuitively, are to domains of quantification
what tense and modal operators are to times and worlds.

As we did for the temporalist and modalist explanations, we can contrast the
quantificationalist explanation with a reductionist account. On this view, the syn-
tax of (1) contains covert occurrences of variables ranging over domains of quan-
tification. These variables get their values from the context of utterance when they
occur free, as in (1), but can be bound and valued by modifiers like ‘with the ex-
ception of the United States,’ as in (4). Thus, (1) expresses the proposition that
no country in d is climate diverse, where d rigidly picks out the current domain of
quantification. This proposition is not only false, but false relative to all domains
of quantification. On the other hand, (4) expresses the proposition that no country
in the domain of countries excluding the United States is climate diverse, which is
true relative to all domains.4 Thus, on the reductionist account, Quantificational-
ism does not follow from the falsity of (1) and the truth of (4).

Unlike Temporalism and Modalism, Quantificationalism has received no philo-
sophical attention. I think this is undeserved, because it is a philosophically fruitful
thesis. As the introductory examples just discussed suggest, Quantificationalism
can serve as the background for a novel analysis of exceptive constructions and other
domain-restricting modifiers in natural language. There are a number of additional
promising applications of Quantificationalism, which I explore in other work. Here
are some examples.

4Several variations of this picture are explored in Stanley and Szabó [2000].
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“To quantify over a domain”: The expression “to quantify over a domain” is
used in discussions of a variety of philosophical topics, from absolute gener-
ality to ontological disagreement and predicativity.5 While these uses are of-
ten fast and loose, there is important theoretical work that a precisification
of this expression can do for us. Quantificationalists can introduce one such
precisification, on which it makes sense to think of propositions, properties
and relations (as opposed to sentences and predicates) as quantifying over
a domain, without assuming that reality has anything like quasi-syntactic
structure.

Metaphysical predicativity: Through the idea of quantification over a domain,
Quantificationalists can also formulate a novel notion of metaphysical pred-
icativity : a proposition, property or relation is metaphysically predicative
when it only quantifies over domains that do not include that proposition.6

Metaphysical predicativity differs from traditional conceptions of predica-
tivity in that it is a property of non-linguistic entities rather than sentences
or definitions. It can be used to articulate a predicativist metaphysics on
which only predicative entities exist, that does not require syntactic com-
plexities of ramified type theory while reaping some of the same benefits
thereof.7

Uniqueness results for free quantifiers: Any two expressions that behave log-
ically like classical universal quantifiers (at the same type) are provably
equivalent [Harris, 1982]. This result is philosophically significant. Clas-
sical logicians can avoid entering merely verbal ontological disputes sim-
ply by agreeing to use “exists” as synonymous with “is identical to some-
thing” [Williamson, 1988]. Classical higher-order logicians can argue that
primitive higher-order quantifiers are intelligible because their meaning is
uniquely pinned down by inferential roles [Bacon, 2023, Ch. 0.3]. Notori-
ously, standard free logics are not strong enough to prove similar uniqueness
results for free quantifiers, so free logicians cannot reap the same benefits.
As we shall see, Quantificationalists have strong reasons to theorize in a free
logic. They also have independent reason to regard the correct inferential
role of free quantifiers as richer than it is normally taken to be. This richer
inferential role turns out to be strong enough to single out the meaning of
free quantifiers uniquely.

As I noted, the purpose of this paper is not to develop any of these applications in
detail. Before that can be done, Quantificationalism needs solid formal foundations,
within which its applications can be rigorously developed. This task is trickier than
one might have thought: Quantificationalism faces problems that do not arise for
Temporalism and Modalism, which threaten to collapse it into inconsistency. This
paper has the twofold purpose of raising and understanding the problems that
arise uniquely for Quantificationalism, and of developing a logical framework for
Quantificationalism that avoids these problems.

5Representative samples include Williamson [2003]; Lewis [1990]; Quine [1953]; Uzquiano

[2019].
6A gloss along these lines is given in Bacon et al. [2016]; Bacon [2021], who note some difficulties

involved in getting precise on the notion of quantification over a domain.
7This may prove useful in formulating novel solutions to intensional paradoxes such as Prior’s

paradox [Prior, 1961], as well as some puzzles in the theory of ground Fine [2010]; Krämer [2013].
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Here is the plan for the paper. I begin in Section 2 by articulating the problems
just mentioned and motivating my preferred solution in broad strokes, covering
some preliminaries along the way. The rest of the paper presents a comprehensive
formal framework implementing this solution Sections 3 to 6. Section 3 covers the
syntactic background. Sections 4 and 5 cover the model theory. Finally, Section 6
presents a full axiomatization of the logic of Quantificationalism and explores some
extensions thereof.

2. Paradoxes of Domain Specification

I introduce the notion of a domain specifier, a device that regiments and general-
izes the behavior of exceptive constructions and other domain-shifting modifiers in
natural language, and explain how domain specifiers are connected to the operator
♦. I then present two paradoxes that arise if we attempt to develop the logic of
Quantificationalism in a standard higher-order framework. Finally, I sketch and
briefly motivate my preferred way out of these paradoxes. It centers on the idea
that domain specifiers are genuinely syncategorematic expressions, which do not
stand for higher-order entities in their own right.

Before all that, I make the preliminary point that Quantificationalists should
theorize in a free quantificational logic, in which the classical principle of Universal
Instantiation is not derivable. This is a central observation that comes up repeatedly
when articulating the intended reading of domain specifiers, so it is worth discussing
up front.

2.1. Free logic. Classical quantificational logic consists of the Universal Instanti-
ation schema and the rule of Universal Generalization:

∀xP → P [a/x] (UI)

if Γ ⊢ P , then Γ ⊢ ∀xP (UG)

where x is not free in any formula in Γ. Standard tense and modal logics feature
necessitation rules, which imply that logical truths are eternally and necessarily
true. Together, classical quantificational logic and necessitation rules entail perma-
nentism and necessitism, which say, respectively, that always, everything eternally
exists and that necessarily, everything necessarily exists.8

A∀xA∃y(x = y) (Permanentism)

□∀x□∃y(x = y) (Necessitism)

Here A and □ are the duals of S and ♢, respectively.
Many philosophers working with tense and modal logics wish to reject (Perma-

nentism) and (Necessitism), convinced that ordinary examples of temporary and
contingent existence abound.9 For example, while the United States exists now, it
did not exist in 1775, and would not have existed had the American Revolution
failed. To avoid (Permanentism) and (Necessitism), these philosophers embrace a
free logic in which (UI) is not derivable.

A similar dialectic arises for Quantificationalists. If our background logic con-
tains classical quantificational logic and is closed under a necessitation rule for

8Permanentism and Necessitism are discussed at length in Williamson [2013] and the rich

literature that followed; see especially Yli-Vakkuri and McCullagh [2017].
9See especially Fine [1977]; Stalnaker [2011].
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the dual ■ of ♦—to the effect that logical truths are true at all domains of
quantification—then Antirestrictivism below is derivable:

■∀x■∃y(x = y). (Antirestrictivism)

Antirestrictivism says that at all domains, everything exists at all domains. In
other words, it says that domains of quantification cannot shrink.

But Quantificationalists have compelling reasons to reject Antirestrictivism. The
very examples I used to initially motivate Quantificationalism essentially involve the
idea of evaluating a proposition for truth at a domain that excludes some things
that actually exist: since, e.g., the United States exists, the domain consisting of
countries other than the United States is strictly smaller than the domain of all
things. In other words, at some domain, namely that of countries other than the
United States, there is no such thing as the United States.

The issue here is not that there are intuitive counter-examples to Antirestric-
tivism. Rather, it is that accepting Antirestrictivism changes the subject. Quantifi-
cationalism is a theory of domain specification, the way Temporalism is a theory of
tense. Temporalists think that tense should be regimented by means of non-trivial
tense operators. Tense divides into past, present, and future tense, so temporalists
should admit backward-looking, present-looking, and forward-looking tense opera-
tors. Temporalists can disagree about whether Permanentism is true while agreeing
that they are giving an account of the same phenomenon, namely tense.

Not so for quantificationalists. Quantificationalists think that domain spec-
ification should be regimented by means of non-trivial “quantificational opera-
tors.” Restricting the domain of quantification is a way of specifying a domain
of quantification—to restrict the domain of quantification is to specify a domain
smaller than the current one as the “salient” domain. This is just a fact: expressions
like ‘with the exception of the United States’ do that, regardless of whether they are
ultimately to be analyzed as sentential operators. A quantificationalist who accepts
Antirestrictivism, therefore, is failing to give a full account of domain specification;
they are missing out on domain restriction. Put another way, a quantificationalist
who accepts Antirestrictivism is in some respects like a temporalist who only posits
backward-looking tense operators, failing to give an account of future tense.

Quantificationalists should thus reject Antirestrictivism. The simplest way of
doing so is to reject (UI) and theorize in a free quantificational logic instead.10

2.2. Domain specifiers. The logic of tense operators can be fully characterized by
the logic of “tense nominals,” which are sentential operators formalizing the notion
of truth at a time. A language with tense nominals is equipped with a class of
variables and constants ranging over or standing for times, as well as an expression
at that takes one such term t and returns a sentential operator at(t). Intuitively,
at(t)(P ) is true precisely when P is true at time t. If we understand the logic of
tense nominals, we can characterize the logic of tense operators by endorsing:

Tense Leibnizianism: ∀p(Sp ↔ ∃t(at(t)(p))).11

10Another possibility is to reject the necessitation rule for ■: not all logical truths are true at

all domains of quantification. Concurring with Bacon [2013], I think the choice between rejecting
necessitation and rejecting (UI) ultimately amounts to a merely verbal disagreement about the

notion of a logical truth.
11This characterization of the logic of tense is not uncontroversial. It is reasonable to think that

a proposition can be sometimes true even though there are no such things as times, but Tense
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I take a similar approach to the logic of ♦. We can regiment English expres-
sions like ‘with the exception of the United States’ (or ‘among prime numbers,’ ‘in
Australia,’ ...) by means of an operation At that takes a predicate F (of any type)
and returns a sentential operator. Intuitively, At(F )(P ) is true precisely when P
is true relative to the domain consisting precisely of the F s. We can think of P as
the result of “resetting” the domain of quantification within its scope to precisely
the F s. On this approach, we formalize ‘with the exception of the United States’
as something like

At(λx.x ̸= the U.S.).

More generally, we can allow expressions of the form At(F ) to take values of any
type in their second argument place.12 We can then use the device At to formalize
a broader range of expressions, for example:

(5) ‘Is a country other than the U.S.’ as At(λx.x ̸= the U.S.)(is a country);
(6) ‘Some country’ as At(is a country)(∃);
(7) ‘The tallest American’ as At(is American)(the tallest person).

To be clear, I am not trying to argue that any of these analyses are correct as a
matter of natural language semantics; I just want to give a taste of what is possible.

Call an expression of the form At(F ) a domain specifier. I take it that the logic
of the operator ♦ can be illuminated by studying the logic of domain specifiers.
For, at the very least, every instance of the following schema is true on the target
reading:

At(F )(P ) → ♦P (Master)

If P is true at the F s, then P is true at some domain.
The connection between ♦ and domain specifiers is not as straightforward as

that between the standard tense operators and tense nominals. This is because of
two main reasons. The first is related to the impossibility of quantification over
types in standard higher-order frameworks. Intuitively, ♦P says that we can make
P true by shifting the domain of quantification at some type or other. This is not
something we can express in our object language. The best we can do is to pick a
particular type σ and write down the schema

♦P → ∃Xσ→tAt(X)(P ). (1)

But this makes ♦ stronger than it ought to be.
The second reason is that, as I argued in the previous section, Quantificationalists

should think that the correct logic of quantification is not classical, but free. Given
so, even if we were able to somehow quantify over types to get around the first
expressive limitation mentioned above, writing something like

♦P → ∀σ∃Xσ→tAt(X)(P ), (2)

it would still be true that ♦ is stronger than it is intended to be. For it is consistent
in free logic that ∃X(At(X)(P )) is false and yet some claim of the form At(F )(P )
is true.

Leibnizianism rules that out. I will ignore this complication: I introduce Tense Leibnizianism
merely as a helpful analogy to my own characterization of the logic of ♦, for which a counterpart

to the worry just mentioned does not seem to arise.
12We can do this, for example, by theorizing in terms of type-indexed families of domain

specifiers, where Atσ(F ) has type σ → σ. Alternatively, we could treat domain specifiers as
themselves syncategorematic. For the moment, we can overlook the details, though this is an

important choice point we will return to.
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We will eventually be able to capture the idea that ♦ is a master modality for
all domain specifiers, in much the same sense S is for tense nominals, by means of
infinitary schematic rules. For now, however, I will rely on an intuitive grasp of the
connection between ♦ and domain specifiers.

Let me say a little more about the intended interpretation of domain specifiers.
Recall that a domain specifier At(F ) is supposed to work by resetting the domain of
quantification within its scope to precisely the F s. I sharpen this gloss through the
notion of an existence predicate, defined by its inferential role. In a free logic, an
existence predicate for a free quantifier ∀ is any predicate E! for which the following
are both derivable:

E!a → (∀xP → P [a/x]) (E!UI)

∀xE!x. (∀E!)
Here a must be free for x in P . The schema (E!UI) is a weakening of the classical
principle (UI). A universal generalization ∀xP can fail to imply all its instances,
but always implies an instance P [a/x] under the assumption that a exists. The
schema (∀E!) simply says that everything exists. If our background logic has an
identity predicate, an existence predicate can always be defined as λx.∃y(x = y):
to exist just is to be identical to something.

I think of the current domain of quantification as given by the existing things,
that is, by E!. Part of what it means for a domain specifier At(F ) to reset the
domain of quantification to the F s can thus be captured by writing down a schema
describing the result of applying a domain specifier to an existence predicate itself:

At(Fσ→t)(E!σ) = F. (AtG)

In words: to exist at the F s is just to be F .
This illustrates how resetting the domain of quantification to the F s is different

from restricting it to the F s. The latter idea could be regimented by the schema

At(Fσ→t)(E!σ) = λx.E!x ∧ Fx. (AtR)

In words: to exist at the F s is just to be an existing F . Resetting is more general
than restricting, since we can define

At∩(Fσ→t)(M) := At(λx.E!x ∧ Fx)(M),

and the result of substituting At∩ for At in (AtR) holds whenever (AtG) holds.
Of course, resetting and restricting are the same when the background quantifi-

cational logic is classical, so that E! is equivalent to λx.⊤. But they come apart in a
free logic. If Pegasus the winged horse does not exist, then At(is a winged horse)(E!)
applies to Pegasus, but At∩(is a winged horse)(E!) does not.

2.3. Paradox. I have allowed domain specifiers to take arguments of any type,
without specifying how exactly this is achieved. It is time to get more precise
about this. In standard higher-order languages, no expression can take arguments
of multiple types. Instead, one simulates polymorphic expressions by means of type-
indexed families of expressions. Applied to domain specifiers, this means that, for
each predicate F , instead of having a single domain specifier At(F ) that literally
can combine with arguments of any type, we have a family of domain specifiers
Atσ(F ), each of type σ → σ.

This straightforward approach, unfortunately, leads to paradox in the presence
of a few other eminently plausible assumptions about the logic of domain specifiers.
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There are at least two paradoxes that arise, and multiple variations of each. The
first has a familiar form, but requires stronger assumptions to kick in. The second
is harder to make intuitive sense of, but is a lot more general. I take them in order.

Both paradoxes have to do with the concept of a stable entity. Here is the idea.
Some entities involve quantification, others do not. For example, the property of
loving someone involves quantification, negation does not. To involve quantification
is not a purely syntactic matter. The syntax of the English verb ‘eradicate’ does not
feature any overt or covert quantification, yet its meaning involves quantification:
to eradicate a disease is to make it so that virtually no one has it.

I call stable those entities that do not involve quantification in the sense just
gestured at. Non-stable entities may be “moved” by domain specifiers. For example,
At(F )(loves someone) should be equivalent to loves an F . On the other hand,
stable entities ought to be fixed by domain specifiers: whenM has a stable meaning,
At(F )(M) should be equivalent to M for any F .

The first paradox is, essentially, a version of the infamous Russell-Myhill paradox
[Russell, 1937; Myhill, 1958; Goodman, 2017]. This is a paradox often taken to show
that extremely fine-grained conceptions of metaphysical structure are inconsistent.
If reality were structured the way language is, one would expect every instance of
the following schema to hold:

Fa = Gb → (F = G ∧ a = b). (Struc)

However, this is classically inconsistent. Given a fixed q, let

O := λp.∀X((p = Xq) → ¬Xp).

Using (UI) and propositional reasoning, we can prove ¬O(Oq), which is to say
that there is some Y such that Oq = Y q and Y (O). But then Y and O are not
coextensive, since only the former applies to Oq. This contradicts (Struc).

A similar version of this paradox ensues for quantificationalists, suggesting that
theorizing in terms of domain specification may impose excessively fine-grained
granularity constraints. The simplest version of this paradox arises in the pres-
ence of three assumptions about the logic of domain specifiers. First, that domain
specifiers commute with application:

Atτ (F )(MN) = (Atσ→τ (F )(M))(Atσ(F )(N)). (App)

Intuitively, since MN is built up by applying M to N , any quantification involved
inMN must come from eitherM or N . So, to specify the F s as the domain of quan-
tification in MN is the same as specifying the F s as the domain of quantification
in both M and N , and then applying the results.

The second assumption concerns the behavior of domain specifiers when applied
to quantified claims involving stable properties. It is tempting to think that every
instance of the following schema should hold

At∩t (F )(∀G) = ∀x(Fx → Gx). (3)

In words, saying that considering just the F s, everything is G is the same as saying
that every F is G. However, this is not in general the case when F is not stable. As
an example, consider the property of loving someone, which involves quantification.
Call it being a lover. Assume that Alice loves only Bob, Bob loves only Carol, but
Carol loves no one. Then Alice and Bob are the only lovers. However, only Alice
is a lover among lovers: for among the lovers—i.e., Alice and Bob—Bob does not
love anyone. So it is false that among the lovers, everyone is a lover. That being
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said, when G is stable, it seems reasonable to assume that the schema above holds.
Thus, we assume:

Stabσ(G) → (At∩(F )(∀G) = ∀x(Fx → Gx)). (Stab∀)
Here Stabσ is a predicate of type (σ → t) → t, governed by the schema

Stabσ(F ) → (At(X)(F ) = F ). (4)

Lastly, we need an assumption generating an abundance of stable properties:
every property is coextensive with a stable property:13

∀Xσ→t∃Y (Stab(Y ) ∧ ∀z(Xz ↔ Y z)). (StabC)

Notice that(StabC) is only as strong as intended if we assume that (UI) holds at
least outside the scope of domain specifiers. This is an extra assumption that I will
spot myself to run the present version of the paradox, noting it can be dispensed
with in some variations.

Problem 2.1 (The Quantificationalist Russell-Myhill Paradox). Under the as-
sumptions just stated, we can prove that whenever F and G are not coextensive,
the sentential operators At∩t (F ) and At∩t (G) are distinct. To see this, assume F
and G are not coextensive. Then either there is some F that is not G or the other
way around—suppose the former. By (StabC) each of F and G is coextensive with
a stable property, so suppose without loss of generality that F and G are already
stable. Then At∩t (G)(∀G) is true by (Stab∀), but At∩t (F )(∀G) is false, since it is
equivalent to ∀x(Fx → Gx). So, At∩t (F ) and At∩t (G) disagree on ∀F , and are
therefore distinct.

This is paradoxical, by an argument closely paralleling the Russell-Myhill para-
dox. We can define a property of operators

O := λxt→t.∀Y (t→t)→t((At∩t (Y ) = x) → ¬Y x).

We can then prove ¬O(At∩t (O)), which is to say—helping ourselves to (UI) here—
that there is some Y (t→t)→t such that At∩t (Y ) = At∩t (O) and Y (At∩t (O)). The latter
shows that Y and O are not coextensive, which by what established above in turn
implies that At∩t (Y ) and At∩t (O) are distinct. This is a contradiction.

A naive reaction is to blame paradox on classical quantificational logic, which I
have already argued quantificationalists should reject. This is misguided, for two
reasons. First, to deny that every instance of (UI) is a logical truth—which is what
I argued quantificationalists should do—is consistent with accepting that every
instance of (UI) is true. Only the latter assumption is required to run the paradox.
And second, as I noted in passing, even this assumption can be dispensed with in
some variations of the paradox. The idea here is to replace (UI) with a collection of
schemas to the effect that Atσ→t(λx.⊤)(∀) behaves like a classical quantifier, even
if ∀ itself does not.

Another possible reaction is to blame (StabC). Denying comprehension principles
to block paradoxes is certainly not without precedent. As far as I can see, this move
might well succeed in blocking variations of this specific paradox. But that is beside
the point, as it will do nothing to block the second paradox, which I turn to next.

13Compare this with the more familiar principle of rigid comprehension, which says that every
property is coextensive with a rigid property. A rigid property is one that does not change its

extension across modal space. See, e.g., Bacon and Dorr [2024] for discussion.
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The second paradox is harder to make intuitive sense of, but it is a lot more
general. The most general version I was able to articulate requires only two as-
sumptions besides (AtG): (App) and the claim that there are at least two distinct
stable properties. By “there are” here I do not mean an object language quantified
claim. All that is needed is that we can write down two terms of any type σ → t
that express distinct stable properties. This is always possible, for example, if all
Boolean connectives and all combinators express stable properties: the relevant
properties can then be taken to be negation and the identity combinator λp.p at
type t → t. But putatively fundamental physical properties like is positively charged
and is negatively charged also, intuitively, fit the bill.14

Here is the paradox, presented by omitting type subscripts from At for ease of
exposition.15

Problem 2.2 (The Stability Collapse Paradox). Assume that F and G are stable.
Thus, in particular, F = At(G)(F ). Using (AtG) and Leibniz’s Law, we may
substitute F for At(F )(E!), yielding

F = At(G)(At(F )(E!)). (5)

Now, by (App) on the right-hand side, this is equivalent to

F = (At(G)(At(F )))(At(G)(E!)). (6)

Since At(G)(E!) = G by (AtG), by Leibniz’s Law again we may substitute G for
Atσ(G)(E!), yielding

F = (At(G)(At(F )))G. (7)

But G is stable, so At(G)(G) = G. So, once more by Leibniz’s Law, we get

F = (At(G)(At(F )))(At(G)(G)), (8)

and in turn, by (App),

F = At(G)(At(F )(G)). (9)

Since At(F )(G) = G and At(G)(G) = G both hold by stability, using Leibniz’s Law
twice we finally conclude that F = G.

Thus, (AtG) and (App) imply there can be at most one stable property at
any given type, in the strong sense that every instance of the schema Stabσ(F ) ∧
Stabσ(G) → F = G becomes derivable if (AtG) and (App) are added as axioms to
the background logic. A quantificationalist must either embrace this conclusion or
deny one of (AtG) and (App). Or, alternatively, they can claim that something is
wrong with the background higher-order logic.

14More generally, there is a family of views according to which no fundamental property in-

volves quantification. The world can be completely described by specifying (i) which fundamental
properties are instantiated where, and (ii) which things exist. A view of this sort is one where all

fundamental properties are stable, and surely there are at least two distinct fundamental proper-

ties. See, in particular, Kaplan [1995].
15The paradox is closely related to the problem discussed in [Bacon, 2019, p. 1062]. Bacon

uses an analogous argument to derive, from similar assumptions, the claim that there cannot be
more than two fundamental entities at any type. That being said, these problems should not be

conflated: Bacon’s notion of fundamentality is different—both conceptually and formally—from

my notion of stability, which instead formally resembles his notion of purity. It seems that the
stability collapse paradox could be generalized to show that, under similar assumptions in Bacon’s

framework, there can be at most one pure entity at any given type.
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This paper articulates a solution of the last sort. Before I describe it in more
detail, let me say a few words about why I take this route. I think of domain
specification as a theoretical concept. Domain specifiers are connected to exceptives
and other domain shifting modifiers in natural language (‘in the United States,’
‘among prime numbers’...) in a tight enough way that the former can be introduced
by analogizing them to the latter. But domain specifiers are not supposed to be
stipulative equivalents of such modifiers. Rather, the main way we grasp what
they mean is by understanding their inferential role. I take it we are in a similar
situation with respect to logical vocabulary like Booleans and quantifiers. Truth-
functional conjunction is initially introduced by analogy with the English word
‘and.’ But as we learn enough propositional logic, we come to grasp the meaning of
Boolean conjunction independently of that of ‘and,’ to the point that we can have
substantive disagreements about whether the two are synonymous.16

I take both (AtG), and to a somewhat lesser extent (App) and the non-triviality
of stability, to be integral parts of the inferential role that I am trying to articulate
for domain specifiers. To deny any of these would amount to rejecting the viability
of domain specifiers as a theoretical device. This could prompt us to look for
alternative logical devices to formulate Quantificationalism, or it could be taken as
evidence that Quantificationalism is not a viable philosophical position. I am not
rejecting these options outright. But properly debating these questions requires a
comprehensive lay of the land: whether anyone should or should not theorize in
terms of domain specifiers, or whether any alternative devices do a better job than
domain specifiers, depends on what the costs and benefits of theorizing in terms of
domain specifiers are. I think we can get a good sense of what these benefits and
costs are by asking what sort of changes we need to make to a standard higher-order
framework in order to accommodate domain specifiers.

2.4. Genuine Syncategorematicity. I think both paradoxes rest on one mistake,
i.e., treating domain specifiers as categorematic expressions: independently mean-
ingful terms in our language that can be assigned types. We should instead treat
domain specifiers as genuinely syncategorematic expressions, which only have mean-
ing in relation to the expressions they combine with. In Russellian terms, genuinely
syncategorematic expressions do not contribute constituents to the propositions ex-
pressed by the sentences they occur in; rather, they indicate how the constituents
expressed by their arguments are to be combined to form a proposition.

On this approach, domain specifiers are analogized to application. In standard
higher-order languages, application is introduced as a primitive syncategorematic
operation that forms new terms from old ones: given a term M of type σ → τ and
a term N of type σ, the application MN is a term of type τ . Application is not
itself assigned a type, and does not stand for any higher-order entity. The syncat-
egorematicity of application is visually emphasized by the fact that we notate it
using concatenation, rather than with an overt symbol, though this is not essential.

In the framework I propose, domain specifiers are treated similarly. Domain
specifiers are not treated as terms that can be assigned types. Instead, we equip
the language with an additional syncategorematic term formation rule. Given a
predicate F of type σ → t and a term M of type τ , the expression At(F )(M) is a
term of type τ . The meaning of At(F )(M) is not obtained by applying the meaning

16See Dorr [2025, 2014]; Williamson [2003] on this attitude towards the meaning of logical
vocabulary.
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of At(F ) to that of M—the former is not independently meaningful. Rather, it
is obtained from the meanings of F and M via a primitive combination operation
other than application, which I will eventually gloss model-theoretically as a kind
of metaphysical substitution.

This approach echoes the early logical atomists’ view about Boolean logical vo-
cabulary.17 On their view, expressions like ∧ and → are not meaningful on their
own, but merely indicate how the meanings of their arguments are to be combined
to form the meaning of a compound expression. Again, to put together the mean-
ings of P and Q via conjunction is not to apply the meaning of ‘and’ to those of P
and Q, but to combine them in a fundamentally different way.

Let me briefly sketch how this idea helps with the two paradoxes. The Quantifi-
cationalist Russell-Myhill Paradox shows that if F and G are not coextensive, then
neither are the domain specifiers Att(F ) and Att(G). This only determines an in-
jection from properties of operators to operators if domain specifiers are treated as
categorematic terms of type t → t. If they are instead treated as syncategorematic
expressions, the non-coextensiveness of F and G need not imply the existence of
distinct higher-order entities corresponding to Att(F ) and Att(G).

As for the Stability Collapse Paradox, the categorematicity of domain specifiers
predicts the well-formedness of problematic instances of (App). Given a term of
the form At(F )(At(G)(M)), if At(G) combines with M through application, then

At(F )(At(G)(M)) = (At(F )(At(G)))(At(F )(M)) (10)

is an instance of (App). This identity is not only hard to parse, but suggests
a misguided way of thinking about how domain specifiers compose that leads to
paradox. If we treat domain specifiers syncategorematically, then (10) is no longer
well-formed. And we can tell a different, to my eye more intuitive story about how
domain specifiers compose. If At(G) sets the domain to the Gs and At(F ) sets the
domain to the F s, then their composition At(F )(At(G)(·)) should set the domain
to the Gs among the F s.18 We would thus have the schema:

At(F )(At(G)(M)) = At(At(F )(G))(M). (Comp)

There is a caveat. In standard higher-order frameworks, syncategorematicity
is superficial. Take the case of application. While application is introduced as
a syncategorematic operation, we can always define a categorematic counterpart
of it via λ-abstraction, as λXλy.Xy. Since βη-equivalence suffices for identity,
any term MN formed by applying M to N can always be equivalently rewritten as
(λXλy.Xy)MN , which is constructed by applying the categorematic counterpart of
application itself toM , and then applying the result toN . Even if syncategorematic
application itself does not stand for a higher-order entity, a higher-order entity that
behaves exactly like it can always be found.

The same goes for domain specifiers. Even if we take domain specifiers to be
syncategorematic expressions, categorematic counterparts thereof can always be
reintroduced through λ-abstraction, writing λxσ.At(F )(x). Since βη-equivalence

17See [Russell, 1940, p. 39] and [Wittgenstein, 1921, §5.4].
18One way to see the contrast is to assume that At(F )(At(G)) = At(At(F )(G))—which would

follow, for example, from the assumption that At is stable and combines with G through applica-
tion. If both (10) and (Comp) held, we would then have

At(At(F )(G))(M) = At(At(F )(G))(At(F )(M)), (11)

which one would not expect to hold unless At(F )(M) = M .
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suffices for identity, any term of the form At(F )(M) can always be equivalently
rewritten as one formed through application:

At(F )(M) = (λxσ.At(F )(x))M. (12)

In other words, even if domain specifiers themselves do not stand for higher-order
entities, higher-order entities that behave exactly like them can always be found.
This fact is enough to make both paradoxes resurface: we simply run both argu-
ments using the categorematic counterparts of domain specifiers.

Thus, for the proposed solution to work, we need to work in a framework where
syncategorematicity is more than merely superficial. We need a framework where no
categorematic counterparts of domain specifiers can be reintroduced. The simplest
way to achieve this, and the one I shall pursue here, is to ban all λ-abstraction of
variables occurring within the scope of domain specifiers (or the operator ■) from
outside such contexts. The following terms, for example, will come out as ill-typed:

λx.At(F̄ )(x) λX̄y.At(X̄)(y) λp.■p.

This language thus makes domains specifiers genuinely syncategorematic: they are
syncategorematic, and the language provides no mechanism to introduce categore-
matic counterparts thereof.

I cannot give a direct argument for the genuine syncategorematicity of domain
specifiers independent of the specific framework I propose: I doubt that such an
argument can even be formulated in a framework that does not allow for genuine
syncategorematicity. What I can do is show that genuine syncategorematicity is a
viable option, by developing a consistent and powerful framework in which genuine
syncategorematicity is accommodated and internally explained. That is what I set
out to do in the rest of this paper.

3. Languages and Background Higher-order Logics for
Quantificationalism

I now move on to describing the alternative higher-order framework I propose
for Quantificationalism in detail. This section covers syntactic preliminaries and
background higher-order logics, and explains some noteworthy consequences of the
restrictions on λ-abstraction I impose.

For ease of exposition, I have so far presented domain specifiers as having the
form At(F ), where F is a single predicate. But in the official version of the frame-
work, for greater generality, At is in fact allowed to take finite sequences of predi-
cates of different types in its first argument place. Intuitively, a domain specifier of
the form At(F̄ ), where F̄ is one such sequence of predicates, specifies the domain of
quantification across multiple types at once. For example, we can form a domain
specifier

At(λp.p, is a cat)

which specifies the truths as the domain of quantification at type t, and the cats as
the domain of quantification at type e.

3.1. General Higher-order Languages. Throughout, I assume that we are given
a typed family of variables Var := {Varσ : σ ∈ Types}. A signature Σ is a typed
collection of sets Σσ, one for each type σ. Given a signature Σ, we will generate
two languages (classes of terms) over Σ: L+(Σ) and L†(Σ). The language we will
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ultimately theorize in is L†(Σ), but it is convenient to define it as a fragment of the
larger and more standard language L+(Σ) equipped with full λ-abstraction.

More precisely, given a signature Σ, let L+(Σ) be defined recursively as follows.
Let a nice type sequence be a finite, non-repeating sequence of types. When σ̄ is
any sequence of types, I abuse notation slightly by writing σ ∈ σ̄ to mean that σ
occurs in σ̄. I write M · σ to mean that M is a term in L+(Σ) of type σ.

(1) x · σ whenever x ∈ Varσ;
(2) C · σ whenever C ∈ Σσ;
(3) MN · τ whenever M · σ → τ and N · σ;
(4) λx.M · σ → τ whenever M · τ and x ∈ Varσ;
(5) QxP · t whenever P · t, x ∈ Varσ and Q ∈ {∀,∃} ;
(6) At(F̄ )(M) · σ whenever F̄ := (Fσ)σ∈σ̄ such that σ̄ is a nice type sequence

and Fσ · σ → t for each σ ∈ σ̄, and M · σ;
(7) ■P · t whenever P · t,

Notice that in Item 5, quantifiers are also being treated as syncategorematic ex-
pressions. I will return to this point shortly. The notions of a variable occurring
free or bound in a L+-term are defined as usual, as is the notion of a term being
free for a variable in another term. We write FVσ(M) to denote the free variables
of type σ of M .

It will be convenient to have a name for the term sequences that can occur
in the first argument place of At. I call these nice term sequences, and say that
F̄ = (Fσ1

, . . . , Fσn
) is indexed by a nice type sequence σ̄ := (σ1, . . . , σn) when Fσi

has type σi → t for each 1 ≤ i ≤ n.
We define the language L†(Σ) as a fragment of L+(Σ) that obeys appropriate re-

strictions on λ-abstraction. Given a term M ∈ L+(Σ), the set AVσ(M) (mnemonic
for abstractable variables) consists of all variables of type σ that do not occur free
within the scope of the second argument place of an occurrence of At, or within the
scope of an occurrence of ■. For example, x is not abstractable in At(F̄ )(Gx), and
p is not abstractable in ■p. More formally, we may define AVσ(M) by induction
on the structure of M .

(1) AVσ(v) := Varσ whenever x ∈ Varσ;
(2) AVσ(C) := Varσ whenever C ∈ Σσ;
(3) AVσ(MN) := AVσ(M) ∩ AVσ(N);
(4) AVσ(λx.M) := AVσ(M);
(5) AVσ(QxP ) := AVσ(P ) for Q ∈ {∀, ∃};
(6) AVσ(At(F̄ )(M)) := AVσ(F̄ )∖ FVσ(M);
(7) AVσ(■P ) := Varσ ∖ FVσ(M).

We can now define L†(Σ). Writing M : σ to mean that M is a term in L†(Σ) of
type σ, we may define L†(Σ) recursively just like we did for L+-terms, but replacing
condition (4) with

(4*) λx.M : σ → τ whenever M : τ and x ∈ AVσ(M).

I will need two more languages. The first language L⋆(Σ) consists of those terms
in L†(Σ) containing no occurrences of ■. We will use it to study the logic of domain
specifiers without worrying about ■. In addition, we will let L0(Σ) consist of those
terms in L+(Σ) that contain no occurrences of either ■ or At. We shall use L0(Σ)
mainly for model-building purposes. We thus have four languages in total, ordered
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∧t := ∧ ∧σ→τ := λXλY λzσ.Xz ∧τ Y z

¬t := ¬ ¬σ→τ := λXλyσ.¬τXy

⊥ := ∧ ≡t→t ∧ ⊤ := ¬⊥
⊥t := ⊥ ⊥σ→τ := λxσ.⊥τ

⊤t := ⊤ ⊤σ→τ := λxσ.⊤τ

→ := λpλq.¬p ∨ q ↔ := λpλq.(p → q) ∧ (q → p)

∀̂σ := λXσ→t.∀yσXy ∃̂σ := λXσ→t.∃yσXy

∀x̄M := ∀x1 · · · ∀xnM ∃x̄M := ∃x1 · · · ∃xnM

λx̄.M := λx1 · · ·λxn.M

Figure 1. Abbreviations. Here x̄ is any sequence of variables
(x1, . . . , xn).

by inclusion:

L0(Σ) ⊆ L⋆(Σ) ⊆ L†(Σ) ⊆ L+(Σ).

When L♡ ∈ {L+,L†,L⋆,L0}, an L♡-term over Σ is just an element of L♡(Σ).

3.2. Background Logics. I now move on to describing the background higher-
order logics I shall refer to throughout the paper. Let us fix a standard logical
signature Λ containing the Boolean operations ∧,¬ of the usual types, a constant
E!σ of type σ → t for each type σ, as well as a constant ≡σ of type σ → (σ → t) for
each type σ. The constants E!σ are intended to be existence predicates, whereas
each constant ≡σ is intended to express a relation I call applicative indiscernibility
at the relevant type. This is a relation that has a lot in common with identity, but
turns out to be weaker than it in our non-standard framework. I will elaborate on
this point in the next section.

All signatures considered in this paper are assumed to be extensions of Λ, and
the working signature will always be Λ when a signature is not explicitly specified.
For L♡ ∈ {L+,L†,L⋆,L0}, we let L♡ abbreviate L♡(Λ). I fix some standard
abbreviations I make use of throughout the paper in Figure 1.

I also fix two (classes of) background higher-order logics: the classical systems
H♡ and the free systems FH♡ (short for Free H♡.) I give an axiomatization of FH♡
in Figure 2. The relevant notion of axiomatization is as follows. Figure 2 defines a
relation ⊢ between sets of L♡-formulas and L♡-formulas, the least relation satisfying
all the listed constraints. Then the logic FH♡ is defined as the smallest set of L♡-
formulas containing P whenever ⊢ P holds. An axiomatization, in the same sense,
of H♡ can be obtained by adding (UI) below to the schemas from Figure 2.

∀xP → P [a/x] a free for x in P (UI)

We ultimately care most about the free systems FH♡, but it will be convenient to
view them as fragments of classical systems for model-building purposes.

Both axiomatizations are schematic; for each class of terms introduced in the
previous subsection, we may consider the system that results by taking instances
only from terms in that class. I notate these systems by adding the names of the
relevant classes of terms as subscripts. Thus, for example, we have the system
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⊢ P P a classical tautology (Taut)

⊢ ∀xE!x (∀E!)
⊢ E!a → (∀yP → P [y/a]) a free for y in P (FrUI)

⊢ ∀x(P → Q) → (∀xP → ∀xQ) (Norm)

⊢ ∀xP ↔ ¬∃x¬P (Dual)

⊢ M ≡ M (Refl)

⊢ (M ≡ N) → (FM → FN) (WLL)

⊢ M ≡ N M,N βη-equivalent (βη)

P, P → Q ⊢ Q (MP)

If Γ ⊢ Q then Γ ⊢ ∀xQ x not free in Γ (UG)

Figure 2. The logic FH♡

H0, axiomatized by all L0-terms P such that ⊢ P holds. And we have the system
FH†, axiomatized by all L†-terms P such that ⊢ P . Unless otherwise specified, the
relevant classes of terms are assumed to be over the logical signature Λ.

H+ can be fully and faithfully translated into the standard, consistent system
of higher-order logic that Bacon [2023] calls H by replacing each occurrence of one
of the non-standard syncategorematic expressions by a constant of the appropriate
type. Consequently, H+ is consistent. In turn, every other system introduced in
this section is consistent, since all are fragments of H+.

Note that in each of our systems FH♡, the terms E! and λx.∃y(x ≡ y) are provably
coextensive, in the sense that E!x ↔ ∃y(x ≡ y) is derivable for any variable x of the
right type. Thus the constants E! could be in principle removed from our logical
signature. I keep them as primitive mainly to stress the central role existence
predicates play in the logic of domain specifiers and its model theory.

3.3. The Significance of Restricting Abstraction. The syntax of the lan-
guages introduced in this section is non-standard in two ways. First, the presence
of non-standard syncategorematic operations. Second, the restrictions imposed on
λ-abstraction.

When working in the full language L+, the first choice amounts to a mostly
superficial difference from standard higher-order languages. This remark is essen-
tially repeating the point made earlier that standard higher-order logic does not
accommodate genuine syncategorematicity. Here I want to stress how the point
applies to quantifiers.

Item 5 in the definition of L+ introduces quantifiers as syncategorematic ex-
pressions rather than as constants with types of the form (σ → t) → t. However,
corresponding terms of such types are definable in L+:

∃̂ := λX.∃yXy ∀̂ := λX.∀yXy.

Call these the categorematic quantifiers. In FH+, every term of the form ∀xP is

βη-equivalent to ∀̂λx.P , and likewise for ∃xP . This means that syncategorematic
quantification can always be re-expressed using categorematic quantifiers.



THE LOGIC OF QUANTIFICATIONALISM, PART 1: FOUNDATIONS 19

The situation is different when we work with L† terms only. Notice that categore-

matic quantifiers can still be defined in L†: both ∃̂ and ∀̂ are L†-terms. However,
syncategorematic quantifiers are more expressive than categorematic ones. Since
quantifiers can bind in positions where λ cannot, it is possible that ∀xP is a L†-

term while ∀̂λx.P is not. If so, (βη) alone cannot guarantee that syncategorematic
quantification can always be re-expressed using categorematic quantifiers. In fact,
it turns out that some instances of the following schema are actually not provable
in H†:

19

∃X(∀xP ≡ ∀̂X). (∀-∀̂)
Thus, when working in L†, syncategorematic quantifiers are strictly more expres-
sive than categorematic ones, which is why I have chosen to include them in the
language.

The restrictions on abstraction imposed on L†-terms also have consequences for
how we theorize about identity. In the previous section, I said that each constant
≡σ expresses the applicative indiscernibility relation at type σ. Let me say more
about what that means. Given a constant ≈: σ → σ → t, it is worth distinguishing
between three versions of Leibniz’s Law that ≈ might satisfy:

M ≈ N → (FM → FN) (ALL)

M ≈ N → ∀X(XM → XN) (QLL)

M ≈ N → (P [M/x] → P [N/x]) M,N free for x in P (SLL)

Call these schemas, respectively, applicative (schematic) Leibniz’s Law, quantified
Leibniz’s Law, and substitutional Leibniz’s Law. The constant ≡ is only stipulated
to obey (ALL). And whatever identity is, it surely must obey (SLL).20

All three schemas are equivalent in H+.
21 In FH+, (ALL) and (SLL) are still

equivalent, but (QLL) is strictly weaker: schematic generalizations are stronger
than quantified generalizations in FH+. For example, the object language Leibniz
equivalence relation, defined as

≈L:= λxy.∀Z(Zx ↔ Zy)

satisfies (QLL), but not (SLL). To get a feel for this, consider Max Black’s famous
case of Castor and Pollux [Black, 1952], and assume it really is a counter-example
to the identity of qualitative indiscernibles. Suppose further that every property is
qualitative. Then, Castor and Pollux are Leibniz equivalent. Yet Castor is identical
to Castor, but Pollux is not identical to Castor. This shows that ≈L does not satisfy
(SLL), and in turn (ALL). Examples like these suggest that free logicians should
not reduce identity to Leibniz equivalence.

For the same reasons, (QLL) and (SLL) are not equivalent in FH†. In addition,
the equivalence between (ALL) and (SLL) also breaks down. While (SLL) still
implies (ALL), the converse does not hold. In order to prove (SLL) from (ALL)

19Of course, the negation of any instance of (∀-∀̂) can be consistently added to FH†, but this
has more to do with the fact that FH† is a free logic than with the fact that it is formulated over

L†-terms. Indeed, the negation of every instance of (∀-∀̂) can be consistently added to FH+, as

well.
20This is not entirely uncontroversial, see, e.g., Bacon and Russell [2019].
21Indeed, (WLL) follows from (QLL) by an application of (UG). Moreover, M ≈ N →

((λx.P )M → (λx.P )N), which is βη-equivalent to M ≈ N → (P [M/x] → P [N/x]), is an in-

stance of (WLL), so (WLL) implies (SLL). Lastly, (SLL) implies (QLL) by (UG).
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in FH+, one notes that P [M/x] is βη-equivalent to (λx.P )M , which is of the form
FM . But λx.P can fail to be a L†-term when P contains domain specifiers or ■,
so that proof breaks down. As we shall see, there is no way around this: there
are consistent extensions of FH† in which ≡ does not satisfy (SLL). The intuition,
here, is that two entities may share all their (existing and non-existing) higher-order
properties, while still being distinguishable by means of syncategorematic terms.

Quantificationalists who theorize in L†, therefore, should not conflate identity
with either applicative indiscernibility or Leibniz equivalence. Identity, Leibniz
equivalence, and applicative indiscernibility are relations that collapse in H+ but
come apart in weaker settings, much like truth and double negation classically
coincide but diverge in intuitionistic logic. All are interesting relations with their
own theoretical roles to play.

Applicative indiscernibility plays an important role in my framework, and does
not seem to be definable in terms of identity and other logical vocabulary.22 That
is why I take it as primitive. Part of its role lies in illuminating the nature of
identity from a quantificationalist perspective. In what I take the correct L†-logic
for quantificationalism, the ■-necessitation of applicative indiscernibility satisfies
(SLL). The quantificationalist can thus think of identity as indistinguishability at
all domains of quantification. I say more on this in Sections 5 and 6.

4. Quantificational Substitution Structures

In this and the following section, I introduce a model-theoretic framework for
interpreting the higher-order languages just introduced. This model theory gives a
suggestive picture of the intended interpretation of domain specifiers, and can be
used as a tool for checking the consistency of object language theories.

My model theory is an attempt at characterizing a metaphysical notion of do-
main specification by starting from a well-defined notion of domain specification on
linguistic entities and then “de-syntactifying” it. Let me elaborate.

Notice, first, that there seems to be a well defined notion of domain specification
as an operation on language. For simplicity, assume we are working in H0, so that we
can ignore the complications induced by the distinctions between domain restriction
and domain specification. For each predicate F : σ → t, we can define a translation
mapping αF over L0, where αF (M) is obtained by replacing every occurrence of
the existence predicate E!σ with F and syntactically restricting every quantifier by
F . Thus, for example, if G : σ → t is a constant, we have:

αF (∀xGx) = ∀x(Fx → Gx) αF (∃xGx) = ∃x(Fx ∧Gx)

αF (E! ∧σ G) = F ∧σ G

We can then say that the result of specifying the domain of quantification to the
F s in a sentence P is simply the sentence αF (P ).23

22Applicative indiscernibility is definable from identity and other logical vocabulary if the back-

ground theory of granularity is coarse enough to guarantee that provably coextensive properties
are identical, as in Classicism [Bacon and Dorr, 2024] and Free Classicism [Bacon, 2024]. While I
am attracted to a quantificationalist analogue of these theories, I do not want to bake too much

granularity theory into my framework.
23This is not a good model of domain specification if the background logic is FH0 rather than

H0, as the mappings αF are not congruences with respect to provable equivalence in FH0. For
example, even though ∃x(x ≡ a) and E!a are provably equivalent, their αF -images are not. To get

a good model of domain specification in FH0, we need to embed FH0 into a classical higher-order
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One way to obtain a model of metaphysical domain specification from the syn-
tactic operation just sketched would be to force quasi-syntactic structure on reality.
On this picture, properties and propositions have metaphysical structure that mir-
rors the syntactic structure of the linguistic entities that express them. Properties
and propositions have atomic constituents, corresponding to the entities expressed
by constants in the language that mirrors reality’s structure. There should then
be a well defined operation of substituting an atomic constituent in a property or
proposition with some other constituent, just like there is a well defined operation of
substituting a term for a constant in a term. We could think of the act of specifying
the F s as the domain of quantification in a property or proposition as the result
of applying a metaphysical substitution of this sort, modeled after the translation
function αF , to that property or proposition.

The quasi-syntactic picture of metaphysical structure is deeply controversial: as
we have seen in Section 2, it is widely taken to be refuted by the Russell-Myhill
paradox. So, I do not wish to characterize domain specification by assuming it.
But theorizing in terms of metaphysical substitutions does not require assuming
the quasi-syntactic picture. Following Bacon [2019], we can instead take the notion
of a metaphysical substitution as primitive, and impose constraints on metaphysi-
cal substitutions that mirror constraints satisfied by our translation functions αF

above. This leads to the notion of a quantificational substitution structure, which
is the central notion of my model theory and the subject of the present section.

The higher-order languages discussed in the previous section can then be inter-
preted over models based on quantificational substitution structures, so that each
domain specifier expresses a quantificational substitution and the operator ■ is
interpreted as a kind of quantifier over quantificational substitutions. It is worth
pointing out, before we begin, that not every quantificational substitution structure
gives rise to a model for our languages. There are some further constraints that we
will need to impose; I will discuss these in the next section.

4.1. Background on Applicative Structures. I begin with a brief review of
applicative structures, the basic structures from which we will build quantificational
substitution structures. For more details, the reader may consult [Bacon, 2023, Ch.
14].

Definition 4.1 (Applicative structure). An applicative structure is a pair A =
(A,App), where A is a typed family of sets Aσ and App is a typed family of
functions Appστ : (Aσ→τ ×Aσ) → Aτ .

logic in a language expanded with new “outer” classical quantifiers, so that our original quantifiers
can be seen as restrictions of the new classical quantifiers by the original restricted predicates.

More precisely, consider a language L+
0 expanded with additional syncategorematic quantifiers

Π,Σ. We stipulate that these new quantifiers obey classical quantificational logic, and that our
original quantifiers ∀,∃ are restrictions of these by the existence predicates:

∀xP ↔ Πx(E!x → P ) ∃xP ↔ Σx(E!x ∧ P ).

Note that in this logic, E! is an existence predicate for ∀ and ∃, but not for Π and Σ. For each

predicate F : σ → t, we can then define a translation mapping βF from L0 to L+
0 , where βF (M)

is obtained by replacing each occurrence quantifier ∀ with the restriction of Π by E! (and likewise
for ∃ and Σ) and subsequently substituting each occurrence of E!σ with F in the result. Thus, for
example,

βF (∀xGx) = Πx(Fx → Gx) βF (∃xGx) = ∃x(Fx ∧Gx).

We can then say that the result of specifying the domain of quantification to the F s in a sentence
P is simply the sentence βF (P ).
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The objects in Aσ represent the entities of type σ and App allows us to apply
entities of function type to their arguments.

Given an applicative structure A, an applicative behavior is a mapping f : Aσ →
Aτ . An applicative behavior f is said to be realized in A when there is f ∈ Aσ→τ

such that, for each a ∈ Aσ, we have f(a) = App(f ,a).
We say that A is full when every applicative behavior on A is realized, and

functional when no two elements of Aσ realize the same applicative behavior, for
all types σ. Lastly, when A is functional, we say that A has combinators if for all
types σ, τ, ρ there are elements k ∈ Aσ→τ→σ and s ∈ A(σ→τ→ρ)→(σ→τ)→σ→ρ such
that

• App((App(k,a),b)) = a whenever a ∈ Aσ and b ∈ Aτ ;
• App(App(App(s, f),g),a) = App(App(f ,a),App(g,a)) whenever f ∈ Aσ→τ→ρ,
g ∈ Aσ→τ and a ∈ Aσ.

Definition 4.2 (Applicative Congruence). An applicative congruence on an ap-
plicative structure A is a typed family of equivalence relations ∼σ⊆ Aσ ×Aσ such
that a ∼σ a′ and f ∼σ→τ f ′ implies App(f ,a) ∼τ App(f ′,a′), for all a,a′ ∈ Aσ and
f , f ′ ∈ Aσ→τ .

Given an applicative congruence ∼ on A, write [a] for the equivalence class of
a under ∼. The quotient of A through ∼ is the applicative structure A/∼ :=
([A], [App]), where

[A]σ := {[a] : a ∈ Aσ} [App]στ ([f ], [a]) := [Appστ (f ,a)].

Definition 4.3 (Direct product). Let {Ai = (Ai,Appi) : i ∈ I} be an indexed
family of applicative structures. The direct product of the Ais is the applicative
structure B = (B,App), where Bσ consists of all mappings that assign an element
of Aσ

i to each index i ∈ I, and where

App(f ,a)(i) := Appi(f(i),a(i)).

As a special case, a direct power of an applicative structure A over an index set I
is the direct product of the constant family {Ai : i ∈ I} where Ai = A for each
i ∈ I.

It is straightforward to verify that a direct product of any family of functional
applicative structures is functional, and that a direct product of any family of func-
tional applicative structures that have combinators itself has combinators. Indeed,
the combinators of such a direct products are the constant functions that map each
index i to the appropriate combinator in the applicative structure Ai. However, a
direct product of a family of full applicative structures need not be full.

4.2. Background on Substitution Structures. I now introduce substitution
structures, which regiment the idea of metaphysical substitutions. The material
here is adapted from Bacon [2019], and can be skipped by readers familiar with
that paper.

Definition 4.4 (Substitution Structure). A substitution structure is a tuple A =
(I,A,Sub) where A is an applicative structure, I = (I, ◦) is a monoid, and Sub is a
typed family of mappings Subσ : I ×Aσ → Aσ satisfying the following conditions:

(1) Subσ(1,a) = a, where 1 is the identity element of I;
(2) Subσ(i,Subσ(j,a)) = Subσ(i ◦ j,a);
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(3) Subτ (i,Appστ (f ,a)) = Appστ (Subσ→τ (i, f),Subσ(i,a)).

The elements of I represent the metaphysical substitutions, while ◦ represents the
operation of composing substitutions. The mapping Sub tells us how each substi-
tution acts on each entity in the applicative structure A.

I will adopt the convention of abbreviating Subσ(i,a) as ia provided no ambi-
guities arise. With this notational convention in place, we can rewrite Items 1 to 3
more transparently as follows:

(1’) 1a = a, where 1 is the identity element of I;
(2’) ija = i ◦ j(a);
(3’) iApp(f ,a) = App(if , ia).

Thus Item 1 says that the identity substitution leaves each entity unchanged; Item 2
says that applying two substitutions in succession is equivalent to applying their
composition; and Item 3 says that substitutions distribute over application. I will
also generally notate a substitution structure (I,A,Sub) simply as (I,A), when the
mapping Sub is clear from context.

A substitution structure A = (I,A) is functional (resp. full) when its underlying
applicative structure is. Furthermore, we say that A is quasi-functional when for
any f ,g ∈ Aσ→t, we have f = g precisely when App(if ,a) = App(ig,a) for each
a ∈ Aσ and any i ∈ I. In other words, an applicative structure is quasi-functional
when no two distinct elements realize the same applicative behavior under all sub-
stitutions.

When A = (I,A) is a quasi-functional substitution structure, we say that A has
combinators when for all types σ, τ, ρ there are elements k ∈ Aσ→τ→σ and s ∈
A(σ→τ→ρ)→(σ→τ)→σ→ρ which satisfy the conditions from the definition of having
combinators for applicative structures under all substitutions. That is to say, for
each i ∈ I, we have:

• App((App(ik,a),b)) = a whenever a ∈ Aσ and b ∈ Aτ ;
• App(App(App(is, f),g),a) = App(App(f ,a),App(g,a)) whenever f ∈ Aσ→τ→ρ,
g ∈ Aσ→τ and a ∈ Aσ.

Definition 4.5 (Substitutional Congruence). Given a substitution structure A =
(I,A), a substitutional congruence on A is a typed family of equivalence relations
∼σ⊆ Aσ×Aσ such that a ∼σ b implies ia ∼ ib, for each a,b ∈ Aσ and every i ∈ I.

It is important to keep in mind that a substitutional congruence need not be an
applicative congruence, nor the other way around.

4.3. Quantificational Substitution Structures. We now have the necessary
tools to introduce the notion of a quantificational substitution structure. Basically,
a quantificational substitution structure is a substitution structure where every
substitution is determined by some domain and the way domains determine substi-
tutions is well behaved with respect to the operations of the substitution structure.

I think of domains as ways of settling what it is to exist at a given type. A
domain says, for finitely many types σ, that for an entity of that type to exist is
for it to have a certain property. We can model this idea as follows.

Definition 4.6 (Domain). Let A be an applicative structure. A domain on A is
a partial mapping f̄ := Types →

⋃
σ A

σ→t defined on finitely many types, such that
f̄(σ) ∈ Aσ→t for each σ ∈ Types on which f̄ is defined.
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Basically, we should think of a domain f̄ as saying that for an entity of type σ
to exist is for it to have the property f̄(σ), when the latter is defined. Given the
requirement that domains be defined on only finitely many types, any domain will
be silent about what exists at types on which it is undefined.

Given a nice type sequence σ̄, we say f̄ is a σ̄-domain when f̄ is defined on σ
precisely when σ ∈ σ̄. I notate the set of all domains on A as Dom(A) and just
Dom when A is clear from context. Likewise, I write Dom σ̄(A), or simply Dom σ̄,
for the set of all σ̄-domains on A.

Convention 4.7. I will often use sequential notation for domains, writing (fσ)σ∈σ̄

for a domain f̄ , where fσ := f̄(σ) for each σ ∈ σ̄, and speak of domains as if they
were type-indexed sequences of properties. I also abuse notation and treat domains
defined on a single type σ as elements of Aσ→t rather than functions from {σ} to
Aσ→t. These domains are called unit domains.

Each domain determines a quantificational substitution, whose function is to
specify that domain as the new domain of quantification within its argument. We
can model this by means of substitution assignment functions.

Definition 4.8 (Substitution Assignment Function). Let A = (I,A) be a sub-
stitution structure. A substitution assignment function is a surjective mapping
i(·) : Dom → I.

We think of if̄ as the quantificational substitution determined by f̄ . In models
based on QSSs, we will semantically associate a domain specifier At(F̄ ) with the
substitution if̄ , where f̄ is the unique domain such that fσ is the interpretation of
Fσ whenever the latter is defined and undefined otherwise.

Some domains are current, in the sense that for each type σ on which they are
defined, what it is for an entity of type σ to exist according to that domain is simply
for it to exist. We model this idea through the notion of an identity domain.

Definition 4.9 (Identity Domain). Let A = (I,A, i(·)) be a substitution structure
equipped with a substitution assignment function. A identity domain is any domain
ē ∈ Dom such that iē is the identity substitution in I.

I write eσ for an arbitrary element of Aσ→t, if there is one, such that ieσ
= 1.

When defining models based on quantificational substitution structures, I will
require that an existence predicate E!σ express eσ. Thus we may think of identity
domains as consisting entirely of interpretations of existence predicates. The iden-
tity substitution can be thought of as a quantificational substitution that specifies
the existing things as the new domain of quantification within its argument.

Through substitution assignment functions, we can also define an operation of
domain composition. Given two nice type sequences σ̄ and τ̄ , let σ̄ + τ̄ be an
arbitrary nice type sequence such that the types occurring in it are exactly the
types that occur in either σ̄ or τ̄ . If f̄ , ḡ ∈ Dom are respectively a σ̄- and a τ̄ -
domain, the composition f̄ • ḡ is a σ̄ + τ̄ -domain defined by putting

(f̄ • ḡ)(σ) :=


if̄gσ if σ ∈ τ̄

fσ if σ ∈ σ̄ but σ /∈ τ̄

undefined otherwise.

(•)

Intuitively, the domain f̄ • ḡ is the domain ḡ seen from the “perspective” of the
domain f̄ . We can think of domains as characterizing not only what exists, but also
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what exists according to other domains—including themselves. So, what it is for
an entity of the same type to exist according to f̄ • ḡ is the same as what it is for
it to exist according to ḡ, according to f̄ . Continuing the example from Section 2,
the domain of lovers specifies the lovers as what exists, and also specifies the lovers
among lovers as what exists according to the domain of lovers. As both the name
and the gloss just given suggest, we will use domain composition to characterize
the composition of quantificational substitutions.

A quantificational substitution structure is defined as a substitution structure
equipped with a substitution assignment function that is “well behaved” with re-
spect to domain composition.

Definition 4.10 (Quantificational Substitution Structure). A quantificational sub-
stitution structure, henceforth aQSS, is a tuple A = (I,A,Sub, i(·)), where (I,A,Sub)
is a substitution structure, i· : Dom → I is a substitution assignment function, such
that an identity unit σ-domain eσ exists for every type σ, and the conditions

if̄ ◦ iḡ = if̄•ḡ (Composition)

ē • f̄ = f̄ • ē (Identity)

hold for all domains f̄ , ḡ and any identity domain ē.

Some comments are in order. Composition says that domain composition com-
mutes with the substitution assignment function. Since i(·) is surjective, for any two

domains f̄ , ḡ there must be a unique domain h̄ such that ih̄ = if̄ ◦ iḡ. Composition
identifies this domain as f̄ • ḡ. So, Composition can be seen as a model-theoretic
regimentation of the way of thinking about the composition of domain specifiers
discussed at the end of Section 2: to specify the domain as the Gs and then as the
F s is the same as specifying the domain as the F s at the Gs.

The existence assumption about identity unit domains is motivated by the use I
intend to make of identity domains as domains consisting entirely of interpretations
of existence predicates. In fact, the existence of all identity unit domains guarantees
that an identity σ̄-domain exists for every nice type sequence σ̄. Indeed, when
σ̄ = (σ1, . . . , σn), an identity σ̄-domain ē can be defined as

ē := eσ1 • eσ2 • · · · • eσn .

It follows immediately that ē(σ) = eσ for each σ ∈ σ̄. That ē is actually an identity
domain follows from Composition.

Identity is a bit more complicated. We could obtain an equivalent definition if we
replaced it with the claim that both the following identities hold for any σ̄-domain
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f̄ :24

if̄eσ = fσ whenever σ ∈ σ̄ (Generality)

if̄eτ = eτ whenever τ /∈ σ̄ (Modularity)

Both conditions concern what quantificational substitutions do to identity unit
domains. Generality requires that applying if̄ to eσ retrieve the σ-th projection
of the domain f̄ . It is this condition that will eventually ensure the schema (AtG)
is valid. Note, also, that Generality explains the second case in the definition of
domain composition (•): when fσ is defined but gσ is not, then (f̄ • ḡ)(σ) = fσ. In
view of Generality, this is exactly what would happen if we were to expand ḡ to a
domain ḡ′ defined at σ as well, with ḡ′(σ) = eσ.

On the other hand, Modularity requires that eτ be a fixpoint of if̄ whenever
τ /∈ σ̄. This condition corresponds to the object-language claim to existτ at the
Fσ→ts is to be an Fσ→t when τ ̸= σ, to be properly formalized. This claim is
inspired by the behavior of the translations αF discussed in the introduction to the
present section, specifically by the fact that αE!σ (E!τ ) = E!τ whenever σ ̸= τ .

Together, Generality and Modularity paint a picture of higher-order existence
as freely recombinable. What exists at one type is completely independent on what
exists at another type. I take this to be a core aspect of the intended interpretation
of domain specification. But it is certainly a philosophically controversial picture:
given reasonable background assumptions, a theory of domain specifiers based on
QSSs is incompatible with theses about higher-order existence familiar from the
literature on higher-order contingentism. I discuss this point in more detail in
other work, though it is worth pointing out here that alternative views of higher-
order existence can be accommodated in a variation of the present framework by
replacing Generality and Modularity with appropriate conditions.

4.4. The Algebraic Structure of Domains. Composition and Identity are also
well motivated from a technical perspective. Together, they ensure that in any QSS
A, the family of all domains can be seen as a monoid having essentially the same
structure as the monoid of substitutions I.

Let me elaborate. First, as a near immediate consequence of Composition it
follows that the domain composition • is associative in any QSS. Thus, its restriction
to any set Dom σ̄ is associative as well. Moreover, we have:

Lemma 4.11. Let A be a QSS. For any nice type sequence σ̄, any identity σ̄-domain
is an identity element with respect to •, in the sense that the identities

ē • f̄ = f̄ = f̄ • ē
hold for each σ̄-domain f̄ .

24Note if̄eσ = (f̄ • eσ)(σ). By Identity the right-hand side equals (eσ • f̄)(σ) = fσ . This

gives us Generality. For Modularity, note if̄eτ = (f̄ • eτ )(τ). By Identity, the right-hand side

equals (eτ • f̄)(τ), which in turn equals eτ by the definition of •. Conversely, assume a tuple

A = (I,A,Sub, i(·)) satisfies the first three conditions of Definition 4.10, plus Generality and

Modularity. Let ē be an identity σ̄-domain and f̄ be a τ̄ -domain. We show that (ē•f̄)(ρ) = (f̄•ē)(ρ)
holds for each type ρ ∈ σ̄ + τ̄ . If ρ occurs in both σ̄ and τ̄ , the claim follows from Generality and

the fact that ē is an identity domain. If ρ occurs in σ̄ but not in τ̄ , then (ē • f̄)(ρ) = eρ. The
right-hand side equals if̄eρ by Modularity, which is just (f̄ • ē)(ρ). Finally, suppose ρ occurs τ̄

but not in σ̄. Then (ē • f̄)(ρ) = iēfρ = fρ. By Generality, the last item equals if̄eρ, which is just

(f̄ • ē)(ρ).
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Proof. By Identity, ē • f̄ = f̄ • ē. Further, since iē is the identity substitution, by
the definition of • the left-hand side equals f̄ . □

Consequently any QSS contains a unique identity σ̄-domain, for each nice type
sequence σ̄.25

We have now established:

Lemma 4.12. Let A be a QSS. For any nice type sequence σ̄, the set of all σ̄-
domains Dom σ̄ is a monoid under the restriction of • to σ̄-domains. The identity
element is given by the unique identity σ̄-domain.

We then unify the class of monoids (Dom σ̄, •) from a QSS A into a single monoid
via a direct limit construction. When σ̄ and τ̄ are nice type sequences such that
every type that occurs in σ̄ occurs in τ̄ , there is a mapping from pad τ̄

σ̄ : Dom σ̄ →
Dom τ̄ given by

pad τ̄
σ̄(f̄) = ē • f̄ ē an identity τ̄ -domain. (Padding)

We should think of ē • f̄ as the “representative” of f̄ among τ̄ -domains. For note
that if̄a = iē•f̄a holds for any a ∈ Aρ, for any type ρ. Indeed, since ē is an identity
domain we have if̄a = (iē ◦ if̄ )a and by Composition the right-hand side equals
iē•f̄a.

Note that each mapping pad τ̄
σ̄ is a monoid homomorphism from (Dom σ̄, •) to

(Dom τ̄ , •). For since the identity σ̄-domain is always uniquely decomposable into
unit identity domains, pad τ̄

σ̄ maps identity domains to identity domains. Moreover,
pad τ̄

σ̄ commutes with domain composition, which is to say that

ē • (f̄ • ḡ) = (ē • f̄) • (ē • ḡ) (13)

whenever ē is the identity τ̄ domain and f̄ , ḡ are σ̄-domains. This follows from the
associativity of • and the fact that ē • ē = ē.

Note the class of monoids (Dom σ̄, •) is partially order by the relation (Dom σ̄, •) ≤
(Dom τ̄ , •) which holds iff any τ̄ -domain is defined on at least as many types as any
σ̄-domain. We can abbreviate this as σ̄ ≤ τ̄ . Further, the padding map pad σ̄

σ̄ is the
identity mapping on Dom σ̄, and composing pad τ̄

ρ̄ with pad ρ̄
σ̄ yields pad τ̄

σ̄ whenever
σ̄ ≤ ρ̄ ≤ τ̄ . We have thus shown that the class of monoids (Dom σ̄, •) is a directed
system.

Now, define

f̄ ≈ ḡ : ⇐⇒ ē • f̄ = ē • ḡ for some identity domain ē.

Basically, f̄ ≈ ḡ holds when f̄ and ḡ have the same “representative” among do-
mains living higher-up in the directed system. The direct limit of our directed
system of monoids is the structure ([Dom], [•]) consisting of the set [Dom] of equiv-
alence classes under ≈, together with the operation [•] defined as the lifting of • to
equivalence classes under ≈. This operation is well defined, since ≈ is a congruence

25This fact has significant philosophical consequences. It allows us to prove that, in what I
take to be the correct logic for Quantificationalism, existence predicates—and consequently free
quantifiers—are uniquely determined by their inferential role. Similar uniqueness results have
been used by classical logicians to argue for the substantivity of ontological disputes [Williamson,
1988], as well as for the intelligibility of primitive higher-order quantifiers [Bacon, 2023]. But

these strategies seem not to generalize to a free setting, since standard systems of free logic are
not strong enough to prove uniqueness results of this sort. I discuss this point in more detail other
work.
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with respect to • in the sense that f̄ ≈ f̄ ′ and ḡ ≈ ḡ′ implies f̄ • ḡ ≈ f̄ ′ • ḡ′. Now,
let [i] : [Dom] → I be the mapping given by [̄f ] 7→ if̄ . This mapping, too, is well
defined, for f̄ ≈ ḡ implies that if̄ = iḡ. We can now establish our desired result.

Theorem 4.13. Let A be any QSS. ([Dom], [•]) is a monoid. The identity element
is given by [ē], where ē is any identity domain. Moreover, the mapping [i] is a
monoid homomorphism from ([Dom], [•]) to (I, ◦).

Proof. The direct limit of a directed system of monoids is always a monoid, where
the identity element is given by the equivalence class of all identity elements of the
monoids in the directed system. For the second part of the theorem, by definition
of identity domains, [i][ē] = [iē] is always the identity element of I. Moreover,

[i]([̄f ][•][ḡ]) = if̄•ḡ
= if̄ ◦ iḡ by Composition

= if̄ ◦ iḡ
= [i][̄f ] ◦ [i][ḡ]

holds for all domains f̄ , ḡ. □

4.5. Congruences and Quotients. Let me now turn to the topic of congruences.
To the notions of applicative and substitutional congruences, we add the notion of
a quantificational congruence: an equivalence relation that is “well behaved” with
respect to the mapping i(·). More precisely, let ∼ be a typed family of equivalence

relations on an applicative structure A and let f̄ , ḡ be respectively a σ̄- and a
τ̄ -domain on A. Write f̄ ∼ ḡ to mean that

(pad σ̄+τ̄
σ̄ (f̄))(ρ) ∼ (pad σ̄+τ̄

τ̄ (ḡ))(ρ) for all ρ ∈ σ̄ + τ̄ .

In other words, f̄ ∼ ḡ holds when the “representatives” of f̄ and ḡ among σ̄ + τ̄ -
domains have ∼-equivalent projections.

Definition 4.14 (Quantificational congruence). A quantificational congruence on
a QSS A is a typed family ∼ of equivalence relations on A, such that f̄ ∼ ḡ implies
if̄a ∼ iḡa for every a ∈ Aσ, whenever f̄ , ḡ are domains over A.

By putting together this notion with those of an applicative congruence and of
a substitutional congruence, we reach the general notion of a congruence.

Definition 4.15 (Congruence). A congruence on a QSS A is a quantificational
congruence on A that is also a substitutional congruence for the underlying sub-
stitution structure and an applicative congruence for the underlying applicative
structure.

It is worth noting for later reference that congruences as just defined are automat-
ically congruences for domain composition:

Proposition 4.16. Let ∼ be a congruence on a QSS A and let f̄ , f̄ ′, ḡ, ḡ′ be domains
on A with f̄ ∼ f̄ ′ and ḡ ∼ ḡ′. Then f̄ • ḡ ∼ f̄ ′ • ḡ′.
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Proof. Wlog, assume f̄ , f̄ ′ are both σ̄-domains and ḡ, ḡ′ are both τ̄ -domains.26 Let
ρ be any type. We show (f̄ • ḡ)(ρ) ∼ (f̄ ′ • ḡ′)(ρ) whenever ρ ∈ σ̄+ τ̄ . If ρ ∈ τ̄ , then
(f̄ • ḡ)(ρ) = if̄gρ ∼ if̄ ′g

′
σ. Otherwise, (f̄ • ḡ)(ρ) = fρ ∼ f ′ρ. □

Congruences can be used to define an operation of quotienting for QSSs. When
∼ is a congruence on a QSS A, write if̄ ∼ iḡ to mean that if̄a ∼ iḡa holds for every
a ∈ Aσ and write [if̄ ] for the equivalence class of if̄ under this lifting of ∼.

Definition 4.17 (Quotient). Let A be a QSS and ∼ a congruence on A. When f̄ is a
σ̄-domain, write [̄f ] for the partial function with [̄f ](σ) := [fσ] when σ ∈ σ̄ and unde-
fined otherwise. The quotient of A under∼ is the QSS A/∼ := ([I], [A], [Sub], [i(·)], [ξ]),
where

(1) [A] is the quotient of A under ∼;
(2) [I] = ([I], [◦]) is the quotient of the monoid (I, ◦) under the lifting of ∼ to

I;
(3) [Sub]([if̄ ], [a]) = [Sub(if̄ ,a)];
(4) [i]· is the mapping [̄f ] 7→ [if̄ ].

It is straightforward to verify that this is, indeed, a QSS.

4.6. Stability. Finally, I introduce the model-theoretic notion of stability and some
of its weakenings. Stability is essentially the restriction of the concept of purity from
Bacon [2019] to QSSs.

Definition 4.18 (Stability). Let A be a QSS. An entity a ∈ Aσ is called

• σ̄-stable in A when if̄a = a for every σ̄-domain f̄ ;
• Stable in A when it is σ̄-stable for all nice type sequences σ̄.

If we think of quantificational substitutions as only moving entities that involve
quantification, then stable entities are naturally thought of as entities that do not
involve quantification. Weakenings of the notions of stability characterize entities
that do not involve quantification ranging over entities of certain types only.

A stable domain is any domain f̄ such that fσ is stable whenever it is defined.
A stabilizing substitution is any substitution if̄ such that f̄ is a stable domain.
Likewise, the notions of a σ̄-stable domain and of a σ̄-stabilizing substitution are
defined.

It turns out that given minimal assumptions about the existence of stable do-
mains, stable (resp. σ̄-stable) entities can be equivalently characterized as those
entities that lie in the range of some stabilizing (resp. σ̄-stabilizing) substitution.
This result will come in handy in Section 6.

Proposition 4.19. Let A be a QSS containing at least one stable (resp. σ̄-stable)
τ̄ -domain for each nice type sequence τ̄ , and let a ∈ Aσ. Then a is stable (resp. σ̄-
stable) in A iff for all nice type sequences τ̄ there a stable (resp. σ̄-stable) τ̄ -domain
f̄ such that if̄a = a.

Proof. The left-to-right direction is obvious given the existence assumptions about
stable domains. Conversely, take any stabilizing substitution iḡ. When ḡ is a

26If they were not, we could find appropriate paddings of these sequences which satisfy the
assumption just stated and run the argument with the padded sequence. The desired claim about

the original sequences would follow from this argument.
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τ̄ -domain, we know there is a stable τ̄ -domain f̄ such that if̄a = a. But by (Com-
position) it follows that

iḡa = iḡ(if̄a) = iḡ◦f̄ (a) = if̄ (a) = a.

So, a is stable in A. The same argument works for σ̄-stability. □

4.7. Existence results. Now that the main definitions have been set up, it is time
to show that this was not all for nothing: QSSs actually exist. It is straightforward
to come up with degenerate cases of QSSs. For example, let A be any applicative
structure containing a single entity at each type. We can expand A to a substitution
structure by equipping it with the trivial monoid of substitution, containing only the
identity substitution. We can then define i(·) by having every domain determine the
identity substitution. The resulting structure is a QSS, albeit a rather uninteresting
one.

I give two more interesting examples of QSSs. In my first example, I show how
to construct a more realistic QSS by starting from the syntactic model of domain
specification sketched in the introduction to the present section. The construction
is similar to that used to build term models of higher-order logics. We start from
terms and the translations αF sketched out earlier, form equivalence classes of
terms under an appropriate equivalence relation, then lift the translation mappings
to substitutions defined on equivalence classes of terms. This is still not a perfect
example, however: the resulting QSS cannot be turned into a L†-model (in the
sense of Section 5), because it is not rich enough to interpret syncategorematic
quantification.

In the second example, I show how to construct a QSS as a direct power of any
applicative structure. This example shows that while the intended understanding
of domain specification is inspired by the syntactic model, it does not requires us
to think of reality as somehow built out of entities with quasi-syntactic structure.
Moreover, as I shall prove in the next section, this construction yields QSSs that
can be turned into L†-models with interesting properties, so long as the original
applicative structure we take the power of is nice enough.

Example 4.20 (Term Structure Construction). We work in L0. For any nice term
sequence F̄ , define the mapping αF̄ recursively as follows.

(1) αF̄ (C) := C for each constant C ∈ Σσ other than E!σ;
(2) αF̄ (E!σ) := Fσ if Fσ is defined, αF̄ (E!σ) := E!σ otherwise;
(3) αF̄ (x) := x for each variable x ∈ Varσ;
(4) αF̄ (MN) := αF̄ (M)αF̄ (N) whenever M : σ → τ and N : σ;
(5) αF̄ (λx.M) := λx.αF̄ (M);
(6) αF̄ (QxP ) := Qxαt

F̄
(P ) whenever x ∈ Varσ and Q ∈ {∀,∃}.

Notice a slight difference between the definition αF̄ just given and that sketched at
the beginning of the present section. In the current version, αF̄ need not “move”
quantified claims where the syncategorematic quantifiers occur unguarded—where
a quantifier occurrence is guarded when it is syntactically restricted by some predi-
cate. Thus, e.g., we have αF (∃xY x) = ∃xY x rather than αF (∃xY x) = ∃xFx∧Y x,
whenever Y is a variable. The quantifier occurrences whose domain can be specified
in this model are quantifiers that occur guarded by some predicate containing occur-
rences of an appropriate existence predicate. Unguarded quantifiers are taken, for
modelling purposes, to have a fixed, all inclusive domain that cannot be re-specified.
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It is well known that L0 carries an applicative structure L0 := (L0,App), where
Appστ (M,N) := MN . Thus a domain over L0 is essentially a nice term sequence.
More exactly, for each nice term sequence F̄ there is a domain that assigns Fσ to σ
whenever Fσ is defined and is undefined otherwise. In view of this correspondence,
I will notate and speak of domains over L0 as if they were nice term sequences. Of
course, nice term sequences that are mutual permutations of one another correspond
to the same domain.

We define a typed family of equivalence relations ∼σ⊆ Lσ
0 ×Lσ

0 on L0 by setting

M ∼σ N ⇐⇒ H0 ⊢ ασ
F̄ (M)v̄ ↔ ασ

F̄ (N)v̄ for every nice term sequence F̄ .

Intuitively, then, M ∼ N means that M and N are provably equivalent, and
remain so under arbitrary translations. It is easy to see that ∼ is an applicative
congruence of our term applicative structure (L0,App). We then let A := (A,App)
be the quotient of L0 through ∼.

To obtain a substitution structure, we can lift the mappings ασ
F̄

to equivalence
classes of terms. Write [M ] for the equivalence class of M under ∼. A domain
over A is then the result of lifting a domain over L0 to equivalence classes under
∼. This justifies notating domains in A as [F̄ ] := ([Fσ])σ∈σ̄, once more slightly
abusing notation.

To each such domain [F̄ ] we assign a substitution i[F̄ ] by setting

i[F̄ ][M ] := [αF̄ (M)].

It is not difficult to verify that i[F̄ ] and i[Ḡ] are identical whenever [F̄ ] = [Ḡ].

Let I be the set of all such i[F̄ ]s. It is then straightforward to check that I := (I, ◦)
is a monoid, where ◦ is function composition. The identity substitution is given
by i[Ē!σ ], for any type σ, as αE!σ fixes every term by construction. Closure under
composition is ensured by defining:

Ḡ • F̄ :=


αḠ(Fσ) if Fσ is defined

Gσ if Fσ is not defined but Gσ is

undefined otherwise.

Notice the definition just given mirrors that of domain composition given in (•).
This is no accident, as we can show

i[Ḡ] ◦ i[F̄ ] = i[Ḡ•F̄ ] = i[Ḡ]•[F̄ ], (14)

where • is defined as in (•). The proof is a routine induction on the structure of
terms.

Moreover, (A, I,Sub) is a substitution structure, where Sub is function applica-
tion. Indeed, the identity substitution iĒ! fixes every element of A, the condition on
substitution composition is automatic from the choice of ◦ as function composition,
and the requirement that substitutions commute with application follows because
the mappings αF̄ do. Finally, A := (A, I,Sub, i(·)) is a QSS. For i(·) is clearly a
domain assignment function. That identity unit domains exist has already been
shown, as have Identity and Composition.

For simplicity, in this example we started from from a term model of H0, where
E!σ is provably equivalent to ⊤σ. This is not really necessary. All that is required
for this construction to go through is that that there be some term that behaves
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like a classical quantifier according to the model, though that term need not be
connected to E! the way (∀E!) and (FrUI) require (see Section 4).

Example 4.21 (Direct Power Construction). Let A be any applicative structure.
An infinite domain over A is any sequence (fσ)σ∈Types with fσ ∈ Aσ→t. We will
show that the direct power of A over an index set of infinite domains over A can
be turned into a QSS.

Let d̄ be a fixed arbitrary infinite domain over A. An infinite domain f̄ over A
is said to be accessible when dσ = fσ holds for cofinitely many types σ. Let B be
the direct power of A over the index set containing all accessible infinite domains
over A. Thus, the elements of Bσ are functions from the set of all accessible infinite
domains over A to Aσ. I call an element of some Bσ an upper entity (property,
proposition), and an element of some Aσ a lower entity (property, proposition). I
extend this terminology to domains: I shall call a domain over B an upper domain,
and an (infinite) domain over A a lower (infinite) domain.

In this construction, we should think of infinite lower domains as akin to possible
worlds. Then when b is an upper entity and f̄ is a lower infinite domain, we can
think of b(f̄) as what the entity b “looks like” from the perspective of the world
corresponding to f̄ . For brevity, by a point I henceforth mean a lower accessible
infinite domain.

When h̄ is an upper σ̄-domain and f̄ is a point, let us define a (full) function
h̄[̄f ] on types by putting

h̄[̄f ](σ) :=

{
hσ(f̄) when σ ∈ σ̄

fσ otherwise.

Since each hσ is a function from points to elements of Aσ→t and h̄[̄f ] can only
disagree with f̄ on finitely many types, we have that h̄[̄f ] is a point as well.

Thus each upper domain induces a mapping from the set of points to itself. The
key idea in the proof is to use this perspective to match each upper domain to a
substitution. An element b ∈ Bσ is a mapping from points to entities in Aσ. Given
an upper domain h̄, applying ih̄ to b will result in an element that maps the point
f̄ to the value of b on the argument h̄[̄f ]. Formally:

(ih̄b)f̄ := b(h̄[̄f ]).

Thus, if b(f̄) is what b “looks like” from the perspective of the point f̄ , then
(ih̄b)f̄ is what b “looks like” from the perspective of the point h̄[̄f ].

The set of all mappings ih̄ as above, equipped with function composition ◦, is a
monoid. Clearly, ◦ is associative. The identity element is given by iē, where ē is
any upper σ̄-domain with ē(σ) = eσ and eσ is the unique mapping in Bσ→t such
that

eσ(f̄) = fσ.

That is, each eσ is the projection function at the σ-th coordinate. It should be
clear that each such ē determines the constant mapping from points to points,
which implies that iē is indeed an identity element relative to ◦. To check closure
under composition, we first show that whenever h̄, k̄ are respectively σ̄ and τ̄ upper
domains, for all points f̄ and for all types σ we have

(k̄[h̄[̄f ]])(σ) = (h̄ • k̄[̄f ])(σ), (15)
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where • is domain composition as defined in (•). If σ /∈ σ̄+ τ̄ , then both sides equal
f̄σ. If σ ∈ σ̄ + τ̄ , then depending on whether σ ∈ τ̄ (left) or σ /∈ τ̄ (right) we have

(h̄ • k̄[̄f ])(σ) = ih̄kσ(f̄) (h̄ • k̄[̄f ])(σ) = hσ(f̄)

= kσ[h̄[̄f ]] = [h̄[̄f ]](σ)

= (k̄[h̄[̄f ]])(σ) = (k̄[h̄[̄f ]])(σ)

Thus, indeed,

(ih̄(ik̄b))f̄ = (ik̄b)(h̄[̄f ])

= b(k̄[h̄[̄f ]])

= b(h̄ • k̄[̄f ])
= (ih̄•k̄b)f̄ .

Call the structure just shown to be a monoid I. Then (I,B,Sub) is a substitution
structure, where Sub is function application. Indeed, the condition that iēb = b is
obvious from the choice of iē, and the remaining conditions from the definition of
a substitution structure are straightforward to verify.

To conclude, I show that B := (I,B,Sub, i(·)) is in fact a QSS. Obviously, i(·)
is a substitution assignment function. We have already shown that an identity
unit upper domain eσ exists for each type σ. Furthermore, we have shown that
Composition holds when checking that I is a monoid. The only remaining condition
to verify is Identity. So let ē be any identity upper σ̄-domain and h̄ be any upper τ̄
domain. Let f̄ be any point and σ be any type. In view of (15), it suffices to show
that

(ē[h̄[̄f ]])(σ) = (h̄[ē[̄f ]])(σ). (16)

If σ /∈ σ̄ + τ̄ , then both sides equal fσ. Otherwise, depending on whether σ ∈ τ̄
(left) or not (right), we have

(ē[h̄[̄f ]])(σ) = (h̄[̄f ])(σ) (ē[h̄[̄f ]])(σ) = (h̄[̄f ])(σ)

= hσ(f̄) = fσ

= hσ(ē[̄f ]) = ē[̄f ](σ)

= h̄[ē[̄f ]](σ) = h̄[ē[̄f ]](σ).

Thus, B is indeed a QSS.

4.8. A Limitative Result. To conclude this section, I prove a limitative result
that, as we shall see in Section 5.4, is connected to Stability Collapse Paradox
outlined in Problem 2.2.

In substitution structures, substitutions are not identified with any element of
the underlying applicative structure. But we can think of various ways in which
the monoid of substitutions might be connected with the associated applicative
structure. QSS impose a connection of this sort. Domains are determined by finite
sequences of properties drawn from the applicative structure, and each substitution
is determined by a domain through i(·).

We can also imagine connections along the opposite direction, from substitutions
to elements of the applicative structure. A very natural connection of this sort is the
realization relation. While substitutions are not literally identified with elements of
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the underlying applicative structure, some substitution structures are rich enough to
contain realizers of substitutions: higher-order entities whose applicative behavior
matches that of substitutions restricted to a particular type.

Definition 4.22 (Realization). Let A be a substitution structure and i be a sub-
stitution. An element f ∈ Aσ→σ is said to realize i at type σ—or that f is a realizer
of i at type σ—if the identity

ia = App(f ,a)

holds for every a ∈ Aσ. We say that i is realized in A when i has a realizer at every
type, and that A is fully realized when every substitution is realized.

The next two results show that fully realized QSSs are severely impoverished of
stable properties. The argument closely parallels that sketched in Problem 2.2—a
parallel we will make precise in Section 5.4.

Lemma 4.23. Let A be a fully realized QSS. Then for any substitutions if̄ , iḡ and
any a,b ∈ Aσ, if if̄a = if̄b, then (if̄ ◦ iḡ)a = (if̄ ◦ iḡ)b.

Proof. Suppose if̄a = iḡb. By full realization, there are rf̄ , rḡ ∈ Aσ→σ that, respec-
tively, realize if̄ and iḡ at type σ, where a,b ∈ Aσ. Then if̄ ◦ iḡa = if̄App(rḡ,a),
which in turn equals App(if̄rḡ, if̄a) because substitutions distribute over applica-
tion. Likewise, if̄ ◦ iḡa = App(if̄rḡ, if̄b). But since if̄a = iḡb, we must have
if̄ ◦ iḡa = if̄ ◦ iḡb. □

Theorem 4.24. In any fully realized QSS A, any Aσ→t contains at most one stable
property.

Proof. Let A be a fully realized. Suppose f ,g ∈ Aσ→t are stable. We reason as
follows:

(1) ifeσ = f by Generality;
(2) if f = f by stability;
(3) if igeσ = if igf by the above and Lemma 4.23;
(4) igeσ = g by Generality;
(5) igf = f by stability;
(6) ifg = if f by Items 3 to 5;
(7) g = f by Item 6 and stability.

□

5. Models Based on Quantificational Substitution Structures

I now discuss models based on QSSs. These models represent the intended inter-
pretation of domain specification in terms of quantificational substitutions. After
defining the notion of a model, I discuss a few properties of models of philosoph-
ical interest. I close this section by proving two important results concerning the
existence of models.
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5.1. Models. As usual, we let a variable assignment on an applicative structure
A be a function mapping each variable x ∈ Varσ to an element of Aσ.

Definition 5.1 (Model). Let L♡ ∈ {L+,L†,L⋆,L0}. An L♡-model consists of a

QSS A together with a stable L♡-interpretation J·K(·) on A and an L♡-satisfaction
relation |= on A.

By a model I mean a L♡-model for some L♡ ∈ {L+,L†,L⋆,L0}, without specifying
which.

Let me now elaborate on what (stable) interpretations and satisfaction relations
are.27

Definition 5.2 (Interpretation). Let L♡ ∈ {L+,L†,L⋆,L0} and let A = (I,A, i(·))

be a QSS. An L♡-interpretation on A is a function J·K(·) that maps every L♡-term
M · σ and any variable assignment g on A to an element of Aσ. When F̄ is a nice
term sequence indexed by σ̄, write JF̄ Kg for the sequence (JFσKg)σ∈σ̄ We require
that J·Kg satisfy the following conditions:

(1) JxKg = g(x) for every variable x ∈ Varσ;
(2) JMNKg = Appστ (JMKg, JNKg) whenever M : σ → τ and N : σ;
(3) JMKg = JNKh whenever M and N are βη-equivalent and g, h agree on

FV(M) ∩ FV(N);
(4) JE!σKg is an identity unit domain;
(5) JAt(F̄ )(M)Kg = iJF̄ KgJMKg.

Here and throughout, JF̄ Kg denotes the sequence (JFσKg)σ∈σ̄, where σ̄ is the nice
type sequence indexing F̄ . Item 5 is only required when L♡ ̸= L0.

Up to Item 4, the definition just given is completely standard. Item 4 fixes the in-
tended interpretation of existence predicates, which was anticipated in Section 4.3.
Item 5 specifies the role of the map i(·) in determining the interpretation of domain
specifiers, which I have sketched earlier. Both conditions are written in conformity
to Convention 4.7: while JE!σKg is not strictly speaking a unit domain, it corre-
sponds uniquely to the domain that maps σ to JE!σKg and is undefined otherwise.
Likewise, in iJF̄ KgJMKg, by iJF̄ Kg I denote the unique domain defined only on types

that occur in σ̄ that maps σ to JFσKg whenever the latter is defined, rather than
the type-indexed sequence of properties (JFσKg)σ∈σ̄. Thus, JAt(F̄ )(M)Kg equals the
result of applying the quantificational substitution determined by the domain JF̄ Kg
to JMKg. I apply Convention 4.7 in this manner throughout the paper.

In the definition of a model, I work with a more demanding notion of an inter-
pretation, which requires that the interpretations of certain terms we intuitively
take to have nothing to do with quantification to be stable.

Definition 5.3 (Stable interpretation). Let L♡ ∈ {L+,L†,L⋆,L0} and let A be a
QSS. A stable L♡-interpretation on A is a L♡-interpretation such that

(1) J∧Kg and J¬Kg are stable;
(2) JMKg is stable whenever M is a combinator;
(3) J≡Kg is stable.

27Note that Definition 5.2 is not a recursive definition of an interpretation function. It simply

spells out some constraints that a mapping must satisfy in order to count as an interpretation.
The same goes for Definition 5.4. See [Bacon, 2023, Sec. 4.3] for discussion of why a non-recursive

approach is desirable.
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It is very plausible that Boolean connectives and combinators do not, in the
target sense, involve quantification.28 And recall that applicative indiscernibility
does not coincide with the obviously quantified relation of Leibniz equivalence.
Applicative indiscernibility is only subject to the schema (ALL), which generalizes
over properties schematically, not quantificationally.29 There is thus no obstacle to
equipping it with a stable interpretation.

Definition 5.4 (Satisfaction Relation). Let L♡ ∈ {L+,L†,L⋆,L0}, let A be a QSS

and let J·K(·) be an L♡-interpretation on A. A L♡-satisfaction relation is a relation
|= between A and elements of At that satisfies the following conditions, for every
variable assignment g and every domain f̄ ∈ Dom:

(1) A |= App(App(J∧Kg, JP Kg), JQKg) iff A |= JP Kg and A |= JQKg;
(2) A |= App(J¬Kg, JP Kg) iff A ̸|= JP Kg;
(3) A |= App(App(J≡Kg, JMKg), JNKg) iff for every f ∈ Aσ→t we have A |=

App(f , JMKg) precisely when A |= App(f , JNKg);
(4) A |= if̄ J∀xP Kg iff A |= if̄ JP Kg[x7→a] for every a ∈ Aσ such that A |=

App(if̄ JE!Kg, if̄a);
(5) A |= if̄ J∃xP Kg iff A |= if̄ JP Kg[x7→a] for some a ∈ Aσ such that A |=

App(if̄ JE!Kg, if̄a);
(6) A |= if̄ J■P Kg iff A |= (if̄ ◦ iḡ)JP Kg holds for all ḡ ∈ Dom.

Of course, the last condition is not required when L♡ ∈ {L⋆,L0}.

Some comments are needed. Items 1 and 2 are standard and fix the truth-
functional behavior of J∧Kg, J¬Kg. Item 3 is motivated by the intended interpre-
tation of the ≡σ constants as expressing relations of applicative indiscernibility,
as explained in Section 3. Thus JM ≡ NKg is true in a model when, according to
the model, JMKg and JNKg share all their higher-order properties—not just those
falling within the interpretation of the relevant existence predicate.

It will be convenient to have some compact notation for this model-theoretic
analogue of applicative indiscernibility. Given a model A, let us write

a ≡A b : ⇐⇒ A |= App(f ,a) iff A |= App(f ,b).

When a ≡A b holds, we say that a and b are applicatively indiscernible in A. Thus
condition (3) becomes:

(3’) A |= App(App(J≡Kg, JMKg), JNKg) iff JMKg ≡A JNKg.

28To be sure, there are reasons to deny the stability of Boolean connectives. For example, one

might think there is a reading of conjunction on which P ∧Q is synonymous with both P and Q

are true, where both is intended to be read as a quantifier. Likewise, there might be a reading of
negation as synonymous with materially implies every proposition. Now (skipping ahead a bit)
modifying the appropriate conditions in the definition of a satisfaction relation to capture these

readings is straightforward:

(1’) A |= App(App(J∧Kg , JP Kg), JQKg) iff A |= JE!P Kg and A |= JE!QKg and A |= JP Kg and
A |= JQKg ;

(2’) A |= App(J¬Kg , JP Kg) iff A |= JP Kg implies A |= JQKg whenever A |= JE!QKg ;

But the resulting propositional logic would not be classical. These readings of Boolean operators
seem to fit much better in the context of a negative semantics, on which existence is always

required for truth. That is not the framework I am working in here, so I will set this picture aside.
29For more on the idea that there are non-quantificational ways to generalize, see Russo [Un-

published].
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I occasionally suppress the subscript A (and the qualifiers ‘in A’ or ‘in a model’)
when it can be inferred from context.

Notice how the remaining conditions all involve substitutions: they constrain
what it takes to satisfy the interpretation of a formula of a given form after a sub-
stitution has been applied to it. This is due to syncategorematicity. In the case
of, say, (2), we can figure out whether A |= if̄ (App(J¬Kg, JP Kg)) simply by checking
whether A |= App(if̄ J¬Kg, if̄ JP Kg) holds. So, (2) suffices to fix the satisfaction con-
ditions for interpretations of negated formulas under all substitutions. But it does
not make sense to write something like J∀xKg or J■Kg, because syncategorematic
operators are not assigned independent interpretations, so we need to explicitly
build in substitutions in the satisfaction conditions.

Items 4 and 5 constrain, simultaneously, the meanings of quantifiers and exis-
tence predicates, as well as the behavior of substitutions. In the special case where
if̄ is the identity substitution Items 4 and 5 yield the more familiar-looking

(4a) A |= J∀xP Kg iff A |= JP Kg[x7→a] for every a ∈ Aσ such that A |= App(JE!Kg,a);
(5a) A |= J∃xP Kg iff A |= JP Kg[x7→a] for some a ∈ Aσ such that A |= App(JE!Kg,a).

These are just the standard satisfaction clauses for quantifiers in free logic, mirror-
ing the key quantificational axioms of FH♡. The idea behind Items 4 and 5 is that
these standard clauses should hold true in a model and remain true after apply-
ing any quantificational substitution—just like (FrUI) should hold true within the
scope of arbitrary domain specifiers. Indeed, given Item 5 in the definition of an
interpretation, Items 4 and 5 imply the following satisfaction clauses for quantified
statements within the scope of domain specifiers (provided x does not occur free in
F̄ ):

(4b) A |= JAt(F̄ )(∀xP )Kg iff A |= JAt(F̄ )(P )Kg[x7→a] for every a ∈ Aσ such that
A |= JAt(F̄ )(E!x)Kg[x7→a];

(5b) A |= JAt(F̄ )(∃xP )Kg iff A |= JAt(F̄ )(P )Kg[x7→a] for some a ∈ Aσ such that
A |= JAt(F̄ )(E!x)Kg[x7→a].

Thus, intuitively, quantifiers within the scope of domain specifiers range over the
things which exist among the F s.

Another way to understand the satisfaction clauses for quantifiers is by thinking
of domains as akin to possible worlds. Given any model with underlying QSS
A, stable interpretation J·K(·) and satisfaction relation |=, it is always possible to
construct a new model with the same stable interpretation by taking a domain f̄
and defining a new satisfaction relation

A |=f̄ JP Kg : ⇐⇒ A |= if̄ JP Kg.

I call this construction the re-pointing of a model by if̄ . We can notate satisfaction
in the re-pointing of a model using notation familiar from Kripke semantics, writing
A, f̄ |= JP Kg to mean A |=f̄ JP Kg. In this notation, Items 4 and 5 are equivalent to
the following conditions:

(4c) A, f̄ |= J∀xP Kg iff A, f̄ |= JP Kg[x7→a] for every a ∈ Aσ such that A, f̄ |=
App(JE!Kg,a);

(5c) A, f̄ |= J∃xP Kg iff A, f̄ |= JP Kg[x7→a] for some a ∈ Aσ such that A, f̄ |=
App(JE!Kg,a).

These essentially say that the standard satisfaction conditions for free quantifiers
must hold at all domains.
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Lastly, Item 6 regiments the intended interpretation of ■ as generalizing over
domains. Here, too, it is important to recall from Section 2.2 that ■ generalizes
schematically, not quantificationally: the key axiom fixing is behavior is (Master),
not

At(F̄ )(P ) →

(∧
σ∈σ̄

E!Fσ → ♦P

)
. (17)

This is why quantification over domains in the right-hand side of Item 6 is not
restricted to domains consisting entirely of existing properties.

Given a model A and some term P · t in the language of the model, we say that
P is valid in A when A |= JP Kg holds for every variable assignment g. A term P · t
is said to be valid in a class of models when it is valid in every model in that class.

5.2. Regularity and Quasi-Leibnizianness. I now move on to discussing some
model-theoretic properties of philosophical interest. In this subsection, I cover some
properties related to the question of what a quantificationalist who theorizes in L†
should say about the nature of identity.

For any model A and a,b ∈ Aσ, I write

a ∼=A b : ⇐⇒ if̄a ≡A if̄b for every f ∈ Dom.

Again, I suppress the subscript when it is clear from context. I call this relation sub-
stitutional indiscernibility (in a model). Intuitively, two entities are substitutionally
indiscernible (in a model) when they are applicatively indiscernible (in that model)
under any substitution.

Substitutional indiscernibility need not coincide with applicative indiscernibility.
This is the semantic counterpart of the fact—noted in Section 3.3—that (SLL)
does not follow from (WLL) in H† (and so in FH† either). If a model contains
applicatively indiscernible entities a,b that are not substitutionally indiscernible,
then a and b share all their higher-order properties, but they are distinguished by
some substitution. Such models, then, are counter-examples to (SLL) but not to
(WLL), both formulated in terms of the object language constants ≡.

The claim that applicative indiscernibility and substitutional indiscernibility do
not coincide in a model is equivalent to the claim that said model is not regular, in
the following sense.

Definition 5.5 (Regularity). A model A is regular when ≡ is a substitutional
congruence on the underlying QSS.

Clearly, there cannot be irregular models based on fully realized QSSs. For in such
models, each substitution corresponds to a higher-order property whose applica-
tive behavior matches the “substitutional behavior” of the substitution. Thus any
two entities distinguished by some substitution can also be distinguished by some
higher-order property. However, regularity fails in some models based on applica-
tive structures that are not fully realized. In such models, there can be entities that
share all their order properties, but are distinguished by some substitution.

Applicative indiscernibility is the most natural applicative congruence for stan-
dard models of higher-order logic, based on applicative structures only. It is guar-
anteed to be an applicative congruence in any such model. This is part of the
reason why it makes sense to reduce identity to applicative indiscernibility in such
models. Any standard model of higher-order logic can be turned into a Leibnizian
model—one that identifies all applicatively indiscernible entities—by quotienting
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the underlying applicative structure under ≡, then defining an interpretation func-
tion and a satisfaction relation that commute with the quotient map in the right
way.

The existence of irregular models—which I prove later—shows that applicative
indiscernibility cannot play the same role for models in our sense. It would be good
to have some other relation playing this role. Substitutional indiscernibility is in-
tended to do just that. Indeed, we have the following result. Recall from Section 4.5
that a congruence on a QSS is an applicative, substitutional, and quantificational
congruence on the relevant underlying structures.

Proposition 5.6. Substitutional indiscernibility is a congruence on the QSS un-
derlying any L†-model (and so in any L⋆-model).

Proof. Let A be a L†-model. Since ∼= implies ≡ and substitutions commute with
applications, ∼= is an applicative congruence on the applicative structure underlying
A. Since substitutions compose, ∼= is also a substitutional congruence on the un-
derlying substitution structure. To see that ∼= is also a quantificational congruence,
let f̄ , ḡ be respectively a σ̄- and a τ̄ -domain such that f̄ ∼= ḡ. Recall this means
that

(pad σ̄+τ̄
σ̄ (f̄))(ρ) ∼= (pad σ̄+τ̄

τ̄ (ḡ))(ρ) for all ρ ∈ σ̄ + τ̄ .

We now show that if̄a
∼= iḡa holds for each a. Let ih̄ be any substitution. By

Proposition 4.16 we have h̄ • f̄ ∼= h̄ • ḡ, which implies h̄ • f̄ ≡ h̄ • ḡ. Now consider
the term λX̄.At(X̄)(y), where X̄ is a nice term sequence of variables indexed by
σ̄ + τ̄ . Let g be a variable assignment with g(y) = a. By h̄ • f̄ ≡ h̄ • ḡ we have

App(JλX̄.At(X̄)(y)Kg, h̄ • f̄) ≡ App(JλX̄.At(X̄)(y)Kg, h̄ • ḡ).
This is equivalent to (ih̄ ◦ if̄ )a ≡ (ih̄ ◦ iḡ)a. Since h̄ was arbitrary, this shows
if̄a

∼= iḡa, as desired. □

Thus, in our models, substitutional indiscernibility plays a role similar to that
played by applicative indiscernibility in standard models of higher-order logic. In
particular, just like every standard model of higher-order logic can be turned into
a Leibnizian model satisfying the same formulas, every model in our sense can be
turned into a quasi-Leibnizian model satisfying the same formulas.

Definition 5.7 (Quasi-Leibnizianness). A model is quasi-Leibnizian when substi-
tutionally indiscernible entities in the model are identical.

Let the quotient of a model A under a congruence ∼ be the unique model A/∼,
if it exists, obtained by taking the quotient of the underlying QSS of A under ∼,
and defining the interpretation function and satisfaction relation as follows:

JMK[g]/∼ := [JMKg] A/∼ |= JMK[g]/∼ : ⇐⇒ A |= JMKg.

Clearly, A/∼ satisfies the same formulas as A whenever it exists, for the satisfac-
tion relation on A/∼ is well defined precisely when ∼ never relates a truth with a
falsehood.

Proposition 5.8. Every model has a quotient under ∼=.

Proof. In any such model, ∼= is a congruence. Since ∼= implies ≡, it follows that ∼=
never relates a truth with a falsehood. □
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This makes ∼= an extremely natural relation to serve as the interpretation of
identity in models. It is this fact which ensures the quantificationalist who theo-
rizes in L† can prove that an account of identity as applicative indiscernibility at
all domains of quantification is consistent. In other words, identity is applicative
indiscernibility under all quantificational substitutions.

5.3. Stabilization and Quantifier Generality. Other interesting properties of
models are formulated in terms of the notion of stability. We might be interested
in models where entities of a particular kind are stable. For example:

Definition 5.9 (Individual stability). A model A is individual stable when a is
stable whenever a ∈ Ae.

Individual stability captures the idea that individuals have nothing to do with
quantification. This seems intuitive on a structured picture of reality in which indi-
viduals do not have properties and relations as constituents, and in which to involve
quantification is to have a constituent corresponding to the interpretation of an ex-
istence predicate. But it is worth noting there are seemingly coherent philosophical
pictures in which one would expect individuals not to be stable. For example, one
might hold that for the number of planets to be 8 just is for there to be (exactly)
8 planet, where the right-hand side is formalized in the usual purely logical fashion
using quantifiers and identities. On this view, ‘the number of planets is 8’ would
express a non-stable proposition. This might be explained by insisting that 8 is a
non-stable individual. Perhaps this is because the nature of numbers is completely
determined by an appropriate abstraction principle that involves quantification, so
that numbers involve quantification as well. Alternatively, one might propose that
the definite description ‘the number of planets’ expresses a non-stable individual
that, relative to a given domain, is applicatively indiscernible from the cardinality
of planets in that domain.

A second class of stability-theoretic conditions consists of comprehension condi-
tions for the class of stable entities. As I argue in other work, some applications of
Quantificationalism—most importantly the notion of metaphysical predicativity—
rely on the existence of enough stable properties. Comprehension principles for
stability are a natural way of ensuring just that.

Let A be a model and a ∈ Aσ. A stabilizer for a is a stable entity s such
that a ≡ s. The notion of a σ̄-stabilizer is defined the same way, but substituting
‘σ̄-stable’ for ‘stable.’ We can lift the notion of a stabilizer to domains. A stabilizer
for a σ̄-domain f̄ is a σ̄-domain ḡ such that gσ stabilizes fσ whenever fσ is defined.
Likewise for the notion of a σ̄-stabilizer.

Definition 5.10 (Stabilization). A model A is called stabilized (resp. σ̄-stabilized)
when every entity has a stabilizer (resp. a σ̄-stabilizer)

All these notions admit a weak variant (weak stabilizer, weakly stabilized, etc.),
formulated by replacing ≡ with coextensiveness in the corresponding definition.

Clearly, stabilization does not make sense for regular, Leibnizian models. For a
stabilized, regular, and Leibnizian model would just be a model where every entity
is stable, and there are no such models. But stabilization can be had by irregular,
quasi-Leibnizian models in which substitutions have non-trivial behavior.

Note that if a domain f̄ has a σ̄-stabilizer s̄, then if̄ and is̄ have the same
“substitutional behavior” up to applicative indiscernibility.
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Proposition 5.11. Let A be a model and f̄ a σ̄-domain. If f̄ has a stabilizer s̄,
then if̄a ≡ is̄a for every a ∈ Aσ.

Proof. Since each fσ is applicatively indiscernible from sσ, we must have

A |= App(JλX̄.At(X̄)(y)Kg[y 7→a], f̄) ≡ App(JλX̄.At(X̄)(y)Kg[y 7→a], s̄),

where X̄ is a nice term sequence indexed by σ̄. This is to say that if̄a ≡ is̄a. □

We thus have a handy method for constructing σ̄-stabilizers in models where
every identity σ̄-domain has a σ̄-stabilizer, for all σ̄. To construct a σ̄-stabilizer for
an entity a, we simply take a σ̄-stabilizer of the identity σ̄-domain and apply the
corresponding substitution to a. By proposition 4.19, the result must be σ̄-stable.

Proposition 5.12. Let A be a model where every domain has a σ̄-stabilizer, for
each σ̄. Then every entity has a σ̄-stabilizer.

Proof. Take any a ∈ Aσ. Let s̄ be a σ̄-stabilizer for the identity σ̄-domain ē. By
Proposition 4.19, is̄a is stable. Furthermore, by Proposition 5.11, iēa ≡ is̄a and
the left-hand side is just a. □

Stabilization is connected with a property concerning the interpretation of cat-
egorematic quantifiers in models. Recall their definition:

∃̂ := λX.∃yXy ∀̂ := λX.∀yXy.

We might expect models to uniquely fix how the interpretations of categorematic
quantifiers are moved by substitutions. While I have not confirmed this, I conjecture
that they do not: the current definition of models is consistent with more than
one way in which the interpretations of categorematic quantifiers behaves under
substitutions.

Thus, it makes sense to consider properties of models that fix one such behavior.
The most natural choice seems to be the following:

Definition 5.13 (Quantifier Generality). A model A is quantifier general when
the following conditions obtain:

(1) A |= App(if̄ J∀̂Kg,g) iff A |= App(g,a) holds for every a ∈ Aσ with A |=
App(fσ,a);

(2) A |= App(if̄ J∃̂Kg,g) iff A |= App(g,a) holds for some a ∈ Aσ with A |=
App(fσ,a);

Quantifier generality guarantees that if̄ J∀̂Kg is coextensive with the interpretation
of the restriction of a classical quantifier quantifier by fσ, if the model contains such
a classical quantifier. A stronger version of quantifier generality could require that

if̄ J∀̂Kg be identical with the restriction of a classical quantifier by fσ, again assuming
that a classical quantifier exists. As it turns out, this assumption is automatically
satisfied: every quantifier general model contains a classical quantifier, definable as

iJ⊤̄KgJ∀̂σKg.
It is important to understand exactly how quantifier generality differs from the

satisfaction condition for quantifiers stated in Definition 5.4. While the latter is
formulated in terms of syncategorematic quantifiers, it implies the following clause
for the categorematic quantifiers:
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(1′) A |= App(if̄ J∀̂Kg, if̄ (g)) iff A |= App(if̄ (g), if̄ (a)) holds for every a ∈ Aσ

with A |= App(f , if̄ (a));

Unlike in quantifier generality, here the substitution if̄ targets both g and a, in
addition to the quantifier.

This difference between (1′) and quantifier generality, however, collapses in sta-
bilized models.

Proposition 5.14. Every stabilized model is quantifier general.

Proof. Let A be stabilized. I show only the clause for the universal quantifier.
Given any a ∈ Aσ, let sa be an arbitrarily chosen stabilizer of a. Suppose A ̸|=
App(if̄ J∀̂Kg,g). Then A ̸|= if̄App(J∀̂Kg, sg). By generality and the satisfaction
condition on quantifiers, there must be some a ∈ Aσ with A |= App(f , if̄a), such
that A ̸|= App(sg, if̄a). Since applicatively indiscernible entities are also coexten-
sive, it follows that A ̸|= App(g, if̄a). Thus if̄a is the desired witness mentioned in
the definition of quantifier generality.

Conversely, suppose there is some a ∈ Aσ such that A |= App(f ,a) and A ̸|=
App(g,a). Then A |= App(f , if̄sa) and A ̸|= App(if̄sg, if̄sa) both hold by sta-
bilization. By generality and the satisfaction condition on quantifiers, this im-

plies A ̸|= if̄App(J∀̂Kg, sg). By stabilization again, this is equivalent to A ̸|=
App(if̄ J∀̂Kg,g). □

5.4. Model Existence Results. I introduced models to be used as tools for devel-
oping object language theories for quantificationalism, so the question of whether
there are any models with interesting properties is of prime importance.

I present two results concerning model existence: the first negative and the
second positive. The first is a model-theoretic counterpart to Problem 2.2: it
shows that there are no L+-models whatsoever. The positive result shows that an
interesting class of L†-models, on the other hand, is non-empty. Together, I take
it, these results motivate theorizing in L†.

The reason why there are no L+ models is that any L+-model must be based on
a fully realized QSS, in the sense of Definition 4.22, and we have already proved that
any such QSS contains at most one stable property. However, any model contains
more than one stable property at each type.

Theorem 5.15. There is no L+-model.

Proof. Suppose otherwise that A is a L+-model. Take any σ̄-domain f̄ and for each
type σ consider the term

λyσ.At(X̄)(y),

where X̄ is a nice term sequence indexed by σ̄. Letting g be any variable assignment
with g(X̄) = f̄ , it is straightforward to verify that, because βη-equivalent terms have
the same interpretations, Jλyσ.At(X̄)(y)Kg realizes if̄ at type σ.

Generalizing, the QSS underlying A is fully realized, so by Theorem 4.24 it
contains at most one stable property at each type. But since J·K(·) is a stable
interpretation, this cannot be: for example, both J⊥σKg and J⊤σKg are stable and
obviously distinct. □
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The next result, on the other hand, shows that there are L†-models. In fact,
there is a very general construction that can be used to establish the existence of
L†-models with several philosophically interesting properties. It is an extension of
the direct power construction spelled out in Example 4.21.

Theorem 5.16. There are stabilized, functional, quasi-Leibnizian L†-models.

Proof. We begin by taking a full and functional applicative structure A, where At

carries a complete atomic Boolean algebra. We choose A to be full to ensure we can
interpret ≡, atomic to easily define a satisfaction relation, and complete to ensure
we can interpret quantifiers and ■ as infinite conjunctions. Since it is full, A also
has combinators.30

Using the same method described in Example 4.21, we construct a QSS B by
taking a direct power of A over an index set of infinite domains over A. Using
the same terminology as in Example 4.21, I call entities in A lower entities and
entities in B upper entities, and extend this terminology to domains. Recall that
the relevant index set was chosen as follows: given a fixed arbitrary lower infinite
domain d̄, we call an infinite lower domain f̄ accessible when it disagrees with d̄
on only finitely many types. Our index set is the set of all accessible lower infinite
domains, or the points for short.

Recall that each projection mapping eσ from points to Aσ→t with f̄ 7→ fσ corre-
sponds to an identity upper domain, as does any upper domain ē consisting entirely
of projection mappings. Furthermore, observe that B is functional and has combi-
nators, for both of these properties are preserved by direct powers. For the same
reason, Bt carries a complete Boolean algebra.

We now need to construct a model over B. To define an interpretation, the
strategy will be to assign interpretations to constants first, then show that this
assignment can be recursively extended to a full interpretation—thanks to func-
tionality. We let J¬Kg and J∧Kg be the constant functions mapping every point
to the Boolean complement and meet operations of At respectively. For existence
predicates, we put JE!σKg = eσ. To define J≡σKg we proceed as follows. Let U be
any principal ultrafilter on At (which must exist by atomicity), and for any p ∈ At

write A ⊩ p iff p ∈ U . For any a,a′ ∈ Aσ, write a ⇌ a′ to mean that, for any
f ∈ Aσ→t, we have that A ⊩ App(f ,a) iff A ⊩ App(f ,a′). We may assume, wlog,
that a ⇌ a′ implies a = a′.31 We then choose one element r ∈ Aσ→σ→t such that
A ⊩ App(App(r,a),a′) implies a ⇌ a′, and let J≡σKg be the constant function
mapping every point to r. At least one such r must exist by the fullness of A.

We extend J·Kg to a full stable interpretation by recursion on the structure of
terms. For applications, we put JMNKg = App(JMKg, JNKg). For λ-abstracts, we
let Jλx.MKg be the unique element, if it exists, realizing the applicative behavior
b 7→ JMKg[x7→b]. Both these conditions are standard. For At terms, we put

JAt(H̄)(M)Kg := iJH̄KgJMKg.

30The assumption of fullness is stronger than necessary. We could instead just assume that A

is rich enough to support a model of H0, in the standard sense.
31If this were not true, we could have quotiented A by ⇌ at the beginning of our construction



44 ANTONIO MARIA CLEANI

For quantifiers, we put

J∀xP Kg(f̄) :=
∧

{JP Kg[x7→b](f̄) : b ∈ Bσ with A |= App(fσ,b(f̄))},

J∃xP Kg(f̄) :=
∨

{JP Kg[x7→b](f̄) : b ∈ Bσ with A |= App(fσ,b(f̄))}.

Both are well defined by the completeness of At. Finally, we set

J■P Kg(f̄) :=
∧

{JP Kg(h̄(f̄)) : h̄ an upper domain}.

This yields a full interpretation if we can show that interpretations of λ-abstracts
always exist. Because we are working in a non-standard setting involving syncat-
egorematic expressions, we cannot simply infer this from functionality and the
existence of combinators. Still, it can be done: it is a consequence of the following
claim. For any a ∈ Aσ, let ca be the constant mapping on points f̄ 7→ a.

Claim. Let x̄ ⊆ AV(M). Then for each point f̄ , we have

JMKg[x̄ 7→b̄](f̄) = JMKg[x̄7→cb̄(f̄)](f̄).

The proof is a tedious but straightforward induction on the structure of terms.
I should point out that here the restrictions on abstraction imposed on L†-terms
play a crucial role: the above claim would be false had we attempted to define J·Kg
the same way on L+-terms.

In fact, J·Kg is a stable interpretation. We have effectively stipulated that
J¬Kg, J∧Kg and J≡σKg are always stable: every constant element of B is stable in B.
Furthermore, JMKg is also a constant mapping over whenever M is a combinator.
For a closed term can only express a non-stable entity if it contains occurrences of
quantifiers, existence predicates, At or ■; combinators do not contain occurrences
of any such expressions.32

Our last task is to equip B with a satisfaction relation. Here, we set

B |= JP Kg : ⇐⇒ A ⊩ JP Kg(d̄),

where d̄ is the distinguished point chosen at the beginning of the construction, when
defining the notion of accessibility. This is indeed a satisfaction relation given how
we defined J·Kg. So, B is a model.

Finally, let us check that our model B belongs to the desired class. We have
already noted that B is functional. Moreover, B is stabilized. For note that for
each b ∈ Bσ, a stabilizer is given by the constant cb(d̄), which maps every point

to b(d̄). As already observed, constant mappings of this sort are not moved by
any substitution, so cb(d̄) is stable. Now, take any h ∈ Bσ→t. If B |= App(h,b),

this is to say A ⊩ App(h(d̄),b(d̄)). But b(d̄) = cb(d̄)(d̄), so this is equivalent to

A ⊩ App(h(d̄), cb(d̄)(d̄)). And that, in turn, is equivalent to B |= App(h, cb(d̄)).
Thus, B is indeed stabilized.

Finally, B is also quasi-Leibnizian. For b ∼= b′ implies that b(f̄) = b(f̄) for
every point f̄ , since every point corresponds to an upper domain consisting entirely
of constant functions from points to lower properties. But then b and b′ are the
same function from points to lower entities, and so b = b′. □

32When doing this construction in signatures richer than Λ, we might want to interpret addi-
tional non-logical constants as expressing non-stable entities. Even so, combinators will still have

stable interpretations, since they cannot contain occurrences of constants.
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Note that the resulting model must be irregular. For the model evidently con-
tains non-stable entities (for example, any eσ), yet it is stabilized. Thus, there
are non-stable entities that are applicatively indiscernible but distinct from stable
entities. A non-stable entity and its stabilizer will be moved differently by some
substitution, hence the model is irregular.

The construction used in the the proof just given can be generalized to show
the non-emptiness of other interesting classes of models. For example, individual
stability can be ensured by restricting the product so that only constant functions
over points are included in Be. Further, while the construction was carried out in
the logical signature Λ, it is clear that nothing prevents us to generalize it to richer
signatures containing additional non-logical constants.

6. Object Language Theories

I have developed a model-theoretic framework in which our higher-order language
for domain specifiers and the operator ■ can be interpreted. In this section, I
apply these model-theoretic results to formulate object language theories of these
expressions. I present a logic, Q⋆, which is sound and complete for validity over L⋆-
models. I then expand this logic to an L†-theory Q†, which is sound and complete
for validity over L†-models. Finally, I discuss various object-language principles
tracking some of the model-theoretic properties discussed in the previous section.

6.1. Domain Specifiers. The system Q⋆ is obtained by extending our background
free logic FH⋆ with the axioms and rules in Figure 3. Recall the operative notion of
axiomatization: together, Figures 2 and 3 define the least relation ⊢ satisfying all
the listed condition, and Q⋆ is the least set of formulas containing P whenever ⊢ P .
Q⋆ is put forward as an axiomatization of the theory of all L⋆-models.

⊢ At(Ē!)(M) ≡ M (Id)

⊢ At(F̄ )(MN) ≡ (At(F̄ )(M))(At(F̄ )(N)) (App)

⊢ At(F̄ )(At(Ḡ)(M)) ≡ At(F̄ • Ḡ)(M) (CompG)

⊢ At(F̄ )(M) ≡ At(Ḡ)(M) F̄ , Ḡ permutations (Perm)

⊢ At(F̄ )(♡) ≡ ♡ ♡ ∈ {∧,¬,≡} (Stab♡)

⊢ At(F̄ )(M) ≡ M M a combinator (Stabλ)

⊢ At(F̄ )(E!σ) ≡ Fσ when Fσ defined (Gen)

⊢ At(F̄ )(E!σ) ≡ E!σ when Fσ undefined (Mod)

If ⊢ P, then ⊢ At(F̄ )(P ) (At-Nec)

If Γ ⊢ At(F̄ )(Q), then Γ ⊢ At(F̄ )(∀xQ) x /∈ FV(Γ, F̄ ) (At-UG)

Figure 3. The logic Q⋆

Let me comment on the axioms and rules of Q⋆ in turn. The first three axiom
schemas pertain to the substitutional interpretation of At terms. They correspond
to the existence of an identity substitution (Id), the condition that substitutions
commute with application (App), and that the condition that substitutions be
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closed under composition (CompG). But they do more than just that. In particu-
lar, (Id) also characterizes the identity substitution as the substitution induced by
any domain consisting entirely of interpretations of existence predicates. Likewise,
(CompG) spells out how to compute the composition of two substitutions. As the
notation suggests, F̄ •Ḡ is defined in a way that mirrors the model-theoretic notion
of domain composition.

(F̄ • Ḡ)σ :=


At(F̄ )(Gσ) if Gσ is defined

Fσ if Gσ is undefined but Fσ is

undefined otherwise.

Thus, (CompG) corresponds to the Composition condition in the definition of a
QSS.

(Perm) is just an auxiliary axiom guaranteeing that the order in which the ar-
guments of a nice term sequence appear does not matter. (Stab♡) and (Stabλ)
should be self-explanatory, and correspond to the three requirements imposed in
the definition of a stable interpretation.

(Gen) and (Mod) correspond, respectively, to the conditions Generality and
Modularity mentioned in Section 4.3. Recall that these were shown to be jointly
equivalent to the Identity condition in the definition of a QSS.

The remaining two schemas are inference rules. (At-Nec) is a necessitation rule
for domain specifiers. It ensures that logical truths remain true under every pos-
sible way of specifying the domain of quantification. The last rule, (At-UG), is
a strengthening of (UG) required to prove completeness. We could avoid adding
it if we could derive, in its absence, a version of the Barcan formula for domain
specifiers:

∀xAt(F̄ )(P ) → At(F̄ )(∀xP ) x not free in F̄ . (At-Barcan)

But clearly, (At-Barcan) should not be derivable on the intended interpretation on
domain specifiers, on which the latter, so to speak, are capable of expanding the
domain of quantification. And it is readily verified that (At-Barcan) is not valid
in the class of all L⋆-models. In the absence of (At-Barcan), (At-UG) is strictly
stronger than (UG).

The consistency of Q⋆ follows from its soundness over validity over all L⋆-models
and the model existence result established in Section 5.4. In fact, we can prove
that Q⋆ is precisely the theory of validity over all L⋆-models.

Theorem 6.1. Q⋆ is sound and complete with respect to validity over all L⋆-models.
Consequently, it is consistent.

The proof of Theorem 6.1 is by a variation of standard canonical model construc-
tions. I leave it for Appendix A.

6.2. Adding ■. I now explore expansions of Q⋆ over L†-terms. The base system
of this sort is Q†. It is axiomatized by all the axioms and rules from ?? and fig. 3
plus those in Figure 4, this time taking instances from L† rather than L⋆. Let me
comment on the additional schemas from Figure 4.

We have informally characterized ■ as the least modality broader than any
domain specifiers. The schema (Master) and the rule (Surj) formally regiment
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⊢ ■P → At(F̄ )(P ) (Master)

⊢ ■(M ≡ N) → (P [M/x] → P [N/x]) (SLL■)

If Γ ⊢ At(F̄ )(At(X̄)(P )) for all σ̄, X̄ : σ̄ with X̄ /∈ FV(Γ, P, F̄ ),

then Γ ⊢ At(F̄ )(■P ).
(Surj)

Figure 4. Additional schemas axiomatizing Q†.

this characterization.33 (Master), whose dual we have already encountered in Sec-
tion 2.2, ensures that ■ is at least as broad as any domain specifier. On the other
hand, (Surj) ensures ■ is the least modality with this property. If we can prove from
assumptions Γ that within the scope of a domain specifier At(F̄ ), P holds under
arbitrary domain specifiers, then we can conclude, from the same assumption, that
■P holds within the scope of At(F̄ ). The case where At(F̄ ) is just At(Ē!) reduces
to the simpler rule:34

if Γ ⊢ At(X̄)(P ) for all σ̄, X̄ : σ̄ with X̄ /∈ FV(Γ, P ),

then Γ ⊢ ■P.
(CSurj)

Thus (Surj) generalizes (CSurj) in much the same way that (At-UG) generalizes
(UG).

I should point out that (Surj) is an infinitary rule, though in a fairly harmless
way. The rule is infinitary because it (schematically) universally generalizes over
nice type sequences, which cannot be done in the object language. It is an open
question whether (Surj) can be expressed as a finitary rule in the present language.

The remaining schema (SLL■) was anticipated in Section 3.3. It captures the
Quantificationalist analysis of identity as applicative indiscernibility at all domains
of quantification. Thus, when working in systems containing this schema, I will
abbreviate

M = N := ■(M ≡ N).

Again using an adaptation of standard canonical model constructions, we can
prove the following completeness result.

Theorem 6.2. Q† is sound and complete for validity over all L†-models. Conse-
quently, it is consistent.

The proof is presented in in Appendix A.
As anticipated, Q† is consistent with Quantificationalism. This is a simple con-

sequence of the completeness result just mentioned, but let me illustrate with a
concrete instance. An easy consequence of (Gen), the stability axioms, (App) and
(At-Nec) is the following schema

Fσ(At(F̄ )(M)) ↔ At(Fσ)(E!M). (18)

33The label (Surj) stands for Surjectivity. Intuitively, (Surj) says that domain specifiers pick

out all quantificational substitutions, a condition that was baked into our model theory by requir-
ing that every quantificational substitution be determined by some domain.

34The label (CSurj) stands for contingent surjectivity. Intuitively (CSurj) says that domain
specifiers pick out all metaphysical substitutions, perhaps contingently in the sense that they may

fail to do so at some other domain.
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An instance of this is

⊢ ⊥t→t(At(⊥t→t)(⊤)) ↔ At(⊥t→t)(E!⊤). (19)

Since, obviously, Q⋆ ⊢ ¬⊥t→t(At(⊥t→t)(⊤)), using the stability axioms and (App)
it follows that

⊢ At(⊥t→t)(¬E!⊤). (20)

Consequently,

⊢ E!⊤ → (E!⊤ ∧ ♦¬E!⊤). (21)

Using the dual of (FrUI), this implies

⊢ E!⊤ → ∃p(p ∧ ♦¬p). (22)

Since E!⊤ is consistent in Q† (this can be verified using the soundness result above)
it follows that Quantificationalism is consistent in Q†.

For the remainder of the paper I shall treat Q† as the base system over L†-terms. I
review some notable theorems of Q† and consider various philosophically interesting
extensions thereof. If Γ is a set of L†-formulas, I write Q† ⊕ Γ for the least set of
L†-formulas extending both Q† and Γ that is closed under the rules of Q†.

6.3. The Modal Logic of ■. Let me start by saying a little more about the logic
of ■ in Q†. First, note that ■ obeys all axioms of the normal modal logic S4.D:

■(P → Q) → (■P → ■Q) (K)

■P → P (T)

■P → ■■P (4)

■P → ♦P (D)

That (T) is a theorem can be shown (Master), (Id) and (WLL). Moreover, (D)
follows by an instance of (Master) and its dual. For (K), from ■(P → Q) ∧ ■P
we may infer At(X̄)(P → Q) ∧ At(X̄)(P ) for an arbitrary nice term sequence X̄,
using (Master) and propositional logic. This implies At(X̄)(Q) using the fact that
At(X̄) is a normal modality. For (4), note that for arbitrary term sequences of
variables X̄, Ȳ we can derive ■P → At(X̄)(At(Ȳ )(P )), by first using (Master) to
derive ■P → At(At(X̄)(Ȳ ))(P ) and then applying (CompG). (4) then follows by
applying (Surj) first, then (CSurj).

Second, as a straightforward consequence of (At-Nec) and (Surj), we can show
that Q† is closed under a necessitation rule for ■:

if ⊢ P then ⊢ ■P. (■Nec)

Thus, while all axioms of Q⋆ are stated in terms of applicative indiscernibility, Q†
derives their ■-necessitations by (■Nec). So, Q† can be equivalently axiomatized
by the schemas in Figure 4 and the result of substituting = for ≡ in the schemas
from (3).

We might wonder what happens if we require that the logic of ■ be at least S5,
by adding

P → ■♦P. (B■)

A sufficient condition for a model to validate (B■) is that substitutions in the un-
derlying QSS form a group: that is, for any if̄ there should be some iḡ such that
iḡ ◦ if̄ = iJĒ!Kg . I have not confirmed whether there are any models satisfying this
condition. But it turns out this is not a necessary condition: the model constructed
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in the proof of Theorem 5.16 does not satisfy it, and yet it validates (B■). Sub-
stitutions fail to form a group because whenever h̄ consists entirely of constant
mappings over points, ih̄a is always a constant mapping over points as well. But
no substitution can turn a constant mapping over points into a non-constant one.

To see that our model, nonetheless, validates (B■), suppose A ⊩ JP Kg. That
means A |= JP Kg(d̄). Let k̄ be any upper domain. It suffices to find an upper domain
c̄ such that c̄(k̄(d̄)) = d̄. This can be easily done: we simply let c̄ consist of the
constant functions cdσ , each mapping every point to dσ. Thus A |= (ik̄ ◦ic̄JP Kg)(d̄)
holds for every upper domain k̄, which implies A |= J■♦P Kg.35 Consequently,
Q† ⊕ B■ is consistent.

6.4. Granularity. Theorizing in terms of domain specifiers forces one to take a
stand on questions regarding how fine-grained reality is. The balance seems to
be towards finer distinctions: Q† negatively settles some identity questions that FH
leaves open. A simple example is the question whether ∃p.p and ⊤ are identical.
Either answer to this question is consistent in FH, whereas Q† implies a negative
answer: indeed, Q† proves both At(⊥t)(⊤) and ¬At(⊥t)(∃p.p), which by (SLL■)
implies (∃p.p) ̸= ⊤.

Surprisingly, however, Q† turns out to be consistent with a fairly coarse-grained
identity criterion. Bacon [2024] calls free classicism (something equivalent to) the
system obtained by adding the following rule to FH0:

if ⊢ P ↔ Q then ⊢ (λx̄.P ) = (λx̄.Q). (Equiv+)

Intuitively, free classicism identifies all properties that are provably coextensive in
FH0. In our setting, it is natural to consider the system QFC†—for Quantification-
alist Free Classicism—which results from closing Q† under (Equiv+). This system
identifies all properties that are provably coextensive in Q†.

To establish the consistency of QFC†, let me introduce the notion of a quasi-

extensional model.36

Definition 6.3. A model A is quasi-extensional when the following conditions
hold:

(1) Its underlying QSS is quasi-functional;
(2) For any p,q ∈ At, if A |= if̄p holds precisely when A |= if̄q does for all

substitutions if̄ , then p = q (quasi-Fregeanness).

Intuitively, the property of quasi-Fregeanness captures the idea that propositions
having the same truth value at all domains of quantification are identical.

Theorem 6.4. QFC† is sound with respect to validity in quasi-extensional, stabilized
models.

Proof. Let C be the class of quasi-extensional, stabilized models. Note it is closed
under re-pointing. To see that quasi-Fregeanness is closed under repointing, take

35In the presence of (B■), as one would expect, we can prove that distinctness is ■-necessary.
Since identity is defined in terms of ■ itself, the argument is even simpler than Prior’s famous

derivation of the necessity of distinctness in S5 and relies only on (B■) and the duality between ■
and ♦. If M ̸= N , that means ¬■(M ≡ N). This implies ♦¬(M ≡ N), which by in turn implies

■♦¬(M ≡ N). This is equivalent to ■(M = N).
36Bacon and Dorr [2024] introduce a notion of intensionality for categories of models based

on ordinary applicative structures, using a structurally similar definition.
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any A ∈ C and let f̄ be any σ̄-domain. Assume that for every substitution iḡ, we
have A |=f̄ iḡp iff A |=f̄ iḡq. This is to say that for all iḡ we have A |= (if̄ ◦ iḡ)p iff
A |= (if̄◦iḡ)q. I claim this is equivalent to saying that for all substitutions ih̄ we have
A |= ih̄p iff A |= ih̄q. The right-to-left direction is obvious. Conversely, suppose
that for some ih̄, the second equivalence fails. Let s̄ be a σ̄+τ̄ -stabilizer of pad σ̄+τ̄ h̄.
By Proposition 5.12 and the fact that ih̄a = ipad σ̄+τ̄ h̄

p, it follows that is̄p and is̄q

are σ̄-stabilizers for ih̄p and ih̄q respectively. But then (if̄ ◦ is̄)p ≡ is̄p ≡ ih̄p
and likewise for q. Since the equivalence A |= ih̄p iff A |= ih̄q fails, so must the
equivalence A |= (if̄ ◦ is̄)p iff A |= (if̄ ◦ is̄)q, as desired.

We now check that (Equiv+) is sound with respect to C. So suppose C |= P ↔ Q.
Take any model A ∈ C. Take any model A ∈ C. We want to show that for every
domain f̄ we have if̄ Jλx̄.P Kg ≡ if̄ Jλx̄.QKg. For simplicity, assume x̄ is a single
variable x : σ; the general case is analogous.

Since A is quasi-functional, it suffices to show that for each domain if̄ and every
a ∈ Aσ we have App(if̄ Jλx.P Kg,a) = App(if̄ Jλx.QKg,a). Take any a ∈ Aσ and
suppose A |= App(if̄ Jλx.P Kg,a). Since A is stabilized we can find a stabilizer
s ∈ Aσ of a. It follows that A |= if̄ (App(Jλx.P Kg, s)). This is equivalent to
saying A |=f̄ App(Jλx.P Kg, s), so since C is closed under repointing we infer A |=f̄

App(Jλx.QKg, s) and in turn A |= App(if̄ Jλx.QKg,a). We have thus shown that
for all substitutions if̄ , if A |= App(if̄ Jλx.P Kg,a), then A |= App(if̄ Jλx.QKg,a); the
converse follows analogously. But A is quasi-extensional, so this implies if̄ Jλx.P Kg =
if̄ Jλx.QKg, as desired. □

Corollary 6.5. QFC† is consistent.

Proof. We use the construction form the proof of Theorem 5.16, but require that
the applicative structure we start from be Fregean: At must consist of exactly two
elements. If so, then the final model is quasi-Fregean. Moreover, we have already
noted it is functional, and functionality clearly implies quasi-functionality. Thus,
the final model belongs to C, showing C is non-empty. By Theorem 6.4, QFC† must
be consistent. □

6.5. Quantifier Principles. So far, I have not presented any schemas that con-
strain how domain specifiers interact with quantifiers. Some such constraints can
already be derived from the other axioms. For example, by using (At-Nec) on
(FrUI) and distributing the domain specifier in accordance to (Stab♡) we can show
that Q† derives

At(F̄ )(E!σa) → At(F̄ )(∀xP → P [a/x]) (AtUI)

When Fσ is defined, using (Gen) we can further derive

FσAt(F̄ )(a) → At(F̄ )(∀xP → P [a/x]) (AtGUI)

We can impose additional constraints corresponding to the model-theoretic prop-
erty of quantifier generality. One way of doing so is to add schemas ensuring that

each term At(F̄ )(∀̂σ), when Fσ is defined, behaves like the restriction of a classical
quantifier by the predicate Fσ. In Q†, this can be done by adding the following
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schemas:37

At(F̄ )(E!σ)a → (At(F̄ )(∀̂σ)G → Ga) (ÂtFrUI)

At(F̄ )(∀̂σ)(λx.Gx → Hx) → (At(F̄ )(∀̂σ)G → At(F̄ )(∀̂σ)H) ( ̂AtNorm)

At(F̄ )(∀̂σ)G ↔ ¬At(F̄ )(∃̂σ)(λx.¬Gx) (ÂtDual)

I write QG† for the theory Q† ⊕ ( ̂AtFrUI)–( ̂AtDual).

Alternatively, we could add to Q† only instances of the above where F̄ = ⊤̄σ̄ =

(⊤σ1 , . . . ,⊤σn)—which ensure that At(⊤̄)(∀̂) behaves like a classical quantifier when-
ever ⊤̄ is one such sequence—then add

At(F̄ )(∀̂σ) ≡ λX.At(⊤̄)(∀̂)(λy.Fσy → Xy) (23)

At(F̄ )(∃̂σ) ≡ λX.At(⊤̄)(∃̂)(λy.Fσy ∧Xy). (24)

This would ensure that the remaining instances of (Ât∀E!)–( ̂AtDual) are derivable.
These two approaches are equivalent over QFC†, in the sense that the least Q†-
theory containing QFC† and the first set of axioms is the same as the least Q†-theory
containing QFC† and the second set of axioms. However, I conjecture that the second
approach is stronger in Q†, in the sense that QG† does not derive (23) and (24). All
the theories just mentioned are consistent, as all the schemas above are valid in the
model used for the proof of Theorem 5.16 and any re-pointing thereof.

It is important to keep in mind that all of the above schemas only constrain

the behavior of the definable quantifiers ∀̂ and ∃̂, but not the behavior of the more
expressive syncategorematic quantifiers. In fact, none of the schemas above can even
be restated as a constraint on the syncategorematic quantifiers, since At(F̄ )(∀) and
At(F̄ )(∃) are not even well formed. Let me illustrate using the duality of quantifiers
as an example. There are two legitimate questions to ask regarding how the duality

between ∀̂ and ∃̂ interacts with domain specifiers. One is whether ( ̂AtDual) is true,
the other is whether the following is true:

At(F̄ )(∀̂G) ↔ At(F̄ )(¬∃̂λx.¬Gx) (25)

The above schema differs from ( ̂AtDual) in that G is also within the scope of
the domain specifier At(F̄ ). Q† leaves open the first question, but answers the
second question affirmatively. However, there is only one legitimate question to ask
regarding how the duality between the syncategorematic quantifiers interacts with
domain specifiers, namely whether the following is true:

At(F̄ )(∀xP ) ↔ At(F̄ )(¬∃x¬P ) (26)

This question is analogous to the second question about the definable quantifiers
and, like the latter, it is answered affirmatively in Q†.

Another interesting principle to consider is the following:

Fσa → At(F̄ )(∀xP → P [a/x]). (27)

37Note the schema

At(F̄ )(∀̂σ)Fσ (Ât∀E!)
is already a theorem of Q†, derived using (At-Nec), (βη) and (Gen).
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(27) differs from (AtGUI) in that At(F̄ )(a) has been replaced with a. It is equivalent
to

Fσa → At(F̄ )(E!a). (28)

These principles are tempting and seems to fit the intuitive gloss of the meaning of
domain specifiers. They license natural language inferences that strike us as valid.
For example:

(2) Among those who attended the dinner, nobody enjoyed the food.
(3) Alice attended the dinner.
(4) So, Alice did not enjoy the food.

Under an analysis under which ‘Among those who attended the dinner’ semantically
associates with a domain specifier (something like At(λx.x attended the dinner))
taking ‘nobody enjoyed the food’ as its argument, (27) would seem to license this
inference.

But (27) is inconsistent in Q†. It has provably false instances when F : t → t.
Note that in Q†, (28) implies

Fa → FAt(F )(a). (29)

An instance of the above is

(λp.p)E!⊥ → (λp.p)At(λp.p)(E!⊥), (30)

which is βη-equivalent to

E!⊥ → At(λp.p)(E!⊥), (31)

In words: if ⊥ exists, then at the truths, ⊥ exists. This certainly sounds false, and
indeed it is inconsistent in Q†: the antecedent is consistent in Q†, but the consequent
is provably false. Obviously, Q† ⊢ ¬⊥. Using (Gen) and (Stab♡), it follows that
Q† ⊢ ¬At(λp.p)(E!⊥).

That being said, the restriction of (27) obtained by requiring F : e → t is
consistent in Q†. It is a theorem of any extension of Q† which proves a schema to
the effect that individuals are finitely stable. Given such a schema, the relevant
restriction of (27) is a simple consequence of (AtGUI). We can thus view (27) as a
sort of limit case of (AtGUI), restrictions of which become provable in the presence
of stability principles of the right sort.

To conclude this subsection, I want to return to the issues of Barcan (and con-
verse Barcan) formulas for domain specifiers. We can explicitly define syncate-
gorematic expressions whose semantic functions are respectively to “restrict” or
“expand”—rather than “reset”—the domain of quantification to a particular value.
Given a nice term sequence F̄ indexed by σ̄, write

F̄∩ := (Fσ ∧σ E!σ)σ∈σ̄ F̄∪ := (Fσ ∨σ E!σ)σ∈σ̄.

We then put

At∩(F̄ )(M) := At(F̄∩)(M) At∪(F̄ )(M) := At(F̄∪)(M).

I have noted that (At-Barcan) should not be a theorem of the correct logic of
domain specification, given the intended reading of domain specifiers. However, in
view of the gloss just given of the expression At∩(F̄ ), one might have thought that
(At-Barcan) should be derivable in when we replace At∩ for At:

∀xAt∩(F̄ )(P ) → At∩(F̄ )(∀xP ) x not free in F̄ . (At∩-Barcan)
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•
JMKg JE!σKg

•
iJF̄∩Kg JMKg

JFσKg

iJF̄
∩ Kg

•
iJF̄∪Kg JMKg JE!σKg

•
JMKg

JFσKg

iJF̄
∪ Kg

Figure 5. On the left, a counter-example to (At∩-Barcan). On
the right, a counter-example to (At∪-CBarcan).

Likewise, in view of the gloss just given of the expression At∪(F̄ ), one might have
thought that the following converse Barcan formula for At∪(F̄ ) should be derivable.

At∪(F̄ )(∀xP ) → ∀xAt∪(F̄ )(P ) x not free in F̄ . (At∪-CBarcan)

But neither is the case. Here is a counter-example to (At∩-Barcan). Consider
the proposition that something is identical to the proposition that there are only
truths.

∃p(p = ∀q.q). (32)

It is provable in Q† that At∩(λp.p)(∃p(p = ∀q.q)). For both At∩(λp.p)(∀q.q) and
At∩(λp.p)(∀q.q = ∀q.q) are provable and At∩(λp.p)(∃p(p = ∀q.q)) can be inferred
from the latter by applying (3) and the At∩(λp.p)-necessitation of (FrUI). How-
ever, ∃p.At∩(λp.p)(p = ∀q.q) is false in some models. For example, it can be
falsified in a model generated by the direct power construction used in the proof
of Theorem 5.16. We simply need to choose the distinguished domain d̄ so that dt

contains some truths and some falsehoods, but none of the falsehoods in the domain
are applicatively indiscernible from the interpretation of ∀q.q. In any such model,
At∩(λp.p)(p = ∀q.q) is equivalent to p = ∀q.q, so ∃p.At∩(λp.p)(p = ∀q.q) is equiv-
alent to ∃p(p = ∃q.q), which is false. This means that the substitution iJλp.E!p∧pKg

maps J∃p(p = ∃q.q)Kg, a falsehood, to a truth. Not only that: the unique stable
falsehood that is applicatively indiscernible from J∃p(p = ∃q.q)Kg is not applica-
tively indiscernible from the unique stable truth that is applicatively indiscernible
from iJλp.E!p∧pKgJ∃p(p = ∃q.q)Kg.

More generally, counter-examples to (At∩-Barcan) of this sort can always be
generated in direct product models where there is some JMKg ∈ Aσ and some
substitution iJF̄∩Kg such that App(JE!σKg, JMKg) is false but

App(Jλx.E!x ∧ FσxKg, JAt∩(F̄ )(M)Kg) (33)

is true. In such models, the instance of (At∩-Barcan) obtained by letting P :=
∃y.M = y is always false. Likewise, counter-examples to (At∪-CBarcan) can always
be generated in direct product models where there is some JMKg ∈ Aσ and some
substitution iJF̄∪Kg such that App(JE!σKg, JMKg) is true but

App(Jλx.E!x ∨ FσxKg, JAt∩(F̄ )(M)Kg) (34)

is false. I give graphical representations of both sorts of counter-examples in Fig-
ure 5.
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The failures of (At∩-Barcan) and (At∪-CBarcan) are important issues relating to
the intended interpretation of domain specifiers, so let me unpack things further. In
the presence of axioms ensuring that the quantifiers in (At∩-Barcan) are somehow
restricted to stable entities only, then (At∩-Barcan) is indeed derivable. Likewise
for (At∪-CBarcan). For example, as I shall discuss in Section 6.6, the intuitive
idea that individuals involve no quantification at all motivates extending Q† with
a schema ensuring that all entities at type e are stable. In this extension of Q†, all
instances of (At∩-Barcan) and (At∪-CBarcan) where the quantifiers bind variables
of type e are derivable. Counter-examples of the above sort crucially involve the
use of non-stable entities, and it turns out this is a general feature of all possible
counter-examples to (At∩-Barcan) and (At∪-CBarcan). To put it in a slogan, while
not every entity exists at the existing F s, every stable entity does.

Further, instances of (At∩-Barcan) and (At∪-CBarcan) where the variable x is
abstractable in P are in fact derivable in the stronger system QG† and thus are valid
in all direct product models. So, all possible counter-examples to these principles,
in QG†, must involve instances where P contains occurrences of domain specifiers
or ■. Without these expressions, it is impossible to “harness” the lack of stability
of the desired entities to generate counter-examples.

6.6. Object-Language Stability Principles. I now turn to stability principles.
There are two main ways we can extend Q† with further stability constraints. One
is to add more schemas similar to (Stab♡) and (Stabλ). The other is to introduce
object-language terms expressing various notions of stability, then add axioms re-
stricting the behavior of these terms. The first works fine for requiring that entities
of a certain sort be themselves stables, while the second is needed to formulate
comprehension principles on the notion of stability. I discuss each approach in
turn.

One idea that I have just mentioned in the previous section is to extend Q† with
a requirement that individuals be stable. This can be done by adding the following
schema:

a ≡ At(F̄ )(a) a : e. (StabInd)

Q† ⊕ StabInd also derives the ■-necessitation of (StabInd), so it only has models
where all the entities of type e are stable.

Of course, Q† ⊕ StabInd derives

FeAt(F̄ )(a) ↔ Fea a : e. (35)

Since (AtGUI) is also derivable, it follows that Q† ⊕ StabInd proves every instance
of (27) where a : e.

It is worth noting that while (StabInd) is consistent in Q†, it need not be con-
sistent in systems formulated in richer signatures. In particular, it may not be
consistent in systems with signatures containing non-logical constants whose type
features e as a terminal type, if those constants are forced to have non-stable inter-
pretations.38

38I have already sketched a view on which definite descriptions stand for special sorts of non-
stable individuals: ‘the tallest F ’ stands for a non-stable individual applicatively indiscernible
from whomever in the current domain is taller than any F . We may want to regiment this by

adding a constant T : (e → t) → e with a non-stable interpretation that captures the desired
meaning. Then, by (App), TF is guaranteed to be non-stable whenever F is stable, and can be
non-stable even when F is non-stable as well.
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Another interesting schema to consider is one that requires all constants in the
signature to express finitely stable entities:

M ≡ At(F̄ )(M) M a non-logical constant. (StabC)

The plausibility of (StabC) varies depending on what we take the intended inter-
pretations of our constants to be. I am intrigued by the view that (StabC) should
hold if we take ourselves to be theorizing in a fundamental language, where every
constant denotes a fundamental entity and no two constants co-refer. Fundamental
entities are naturally taken to involve no quantification at all. Grounding theo-
rists, for example, seem to be committed to this idea at least for entities of type
t: most grounding theorists define a fundamental proposition as one that is not
grounded by anything and accept that “quantified propositions” are grounded in
their instances.39

Let us now turn to the question of expressing stability-theoretic notions in the
object-language. The most naive attempt at expressing σ̄-stability involves quan-
tifying into the first argument place of domain specifiers:

StabNσ̄ (M) := ∀X̄■(M ≡ At(X̄)(M)).

But this does not have the intended reading in Q†, since universal generalizations
fail to imply all their instances. Theorizing in QG† to use the definable classical

quantifiers At(λx.⊤σ)(∀̂) instead of the syncategorematic quantifiers does not help
either, since one would need to abstract the variables X̄, which occur within the
scope of ■, from outside that occurrence of ■.

The best way to overcome these expressive limitations is to theorize in QFC†
and express generality not by means of quantification, but by using higher-order
identities. We can define the abbreviation

Stabσ̄(M) := ■((λX̄.M) ≡ (λX̄.At(X̄)(M))).

Here X̄ must be indexed by σ̄ and none of the variables occurring in it can be free
in M . By (SLL■), Stabσ̄(M) implies M = At(F̄ )(M) whenever F̄ is indexed by
F̄ . Moreover, if M : σ1 → · · · → σn → t and QFC† ⊢ MȲ ↔ At(X̄)(M)Ȳ for an
arbitrary sequence of variables Ȳ := (Y1, . . . , Yn) with Yi : σi, none of which are
free in At(X̄)(M), we may conclude using (Equiv+) that QG† ⊢ (λX̄Ȳ .MȲ ) =
(λX̄Ȳ .At(X̄)(M)Ȳ ) and thus QFC† ⊢ Stabσ̄(M) using (βη). This shows that
Stabσ̄(M) has the expected inferential behavior. It is then straightforward to verify
that in every model of QFC†, if JStabσ̄(M)Kg is true, then JMKg is σ̄-stable.

The notion of stability proper is likely not expressible in the object-language.
Expressing stability would require somehow generalizing over nice type sequences,
which cannot be done in the present framework. One could expand the language
with additional syncategorematic expressions standing for these notions. But this
is not really necessary: the notions of σ̄-stability turn out to be enough for most
purposes.

A case in point are stability-theoretic comprehension principles. It seems difficult
to characterize stabilized models in the object language, at least in the purely logical
signature Λ. For syncategorematic quantifiers do not behave classically. Moreover,
we cannot use the definable classical quantifier in QFC†⊕QG† either, since we cannot
abstract variables within the scope of Stab from outside its scope.

39Kaplan [1995] also suggests a view that fits with this picture.
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We can, however, express a weaker condition:

∀x∃y(Stabσ̄(y) ∧ x ≡ y). (StabComp)

Even though our language cannot express finite stability, a model that validates
every instance of (Stabλ) must be such that any existing entity is applicatively
indiscernible from some finitely-stable entity, which, by applicative indiscernibility,
also exists.

7. Conclusion

In this paper, I introduced Quantificationalism, a quantificational analog of Tem-
poralism and Modalism. While one may have expected the logic of Quantification-
alism to be straightforward to develop using tools from tense and modal logics,
I have shown there are distinctive problems begetting Quantificationalism, which
seem to have no analogue in the temporal and modal case.

I have then developed a comprehensive higher-order framework in which a logic
for quantificationalism can be articulated and shown to be consistent, overcoming
these problems. The key idea behind the framework is the treatment of domain
specifiers as genuinely syncategorematic operations, which do not stand for higher-
order entities but rather describe how to combine higher-order entities via the
execution of metaphysical substitutions.

The resulting picture is an admittedly exotic one—where distinct entities can
share all their higher-order properties and higher-order existence is freely recom-
binable. But the space of philosophically promising applications of quantification-
alism is rich, and I hope the present framework will prove its worth by serving as
foundations for such endeavors.
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Appendix A. Soundness and Completeness Results

In this section, I prove the main completeness results of this paper, repeated
here for convenience.

Theorem A.1. Q⋆ is strongly sound and complete with respect to validity over all
L⋆-models.

Theorem A.2. Q† is strongly sound and complete with respect to validity over all
L†-models.

I spell out the (somewhat more complicated) proof of Theorem A.2 in full, then
sketch the necessary adaptations to obtain a proof of Theorem A.1.

A.1. Syntactic preliminaries. In this section I will show that consequence in Q†
can be characterized by a Gentzen-style deductive system where derivations are
trees, namely, rooted posets in which every chain is well founded. Q† is an infinitary
system in the sense that these trees can be infinitely branching, though each branch
will only have finite height. I use this deductive system to better regiment my
soundness proof and to establish a key lemma in my completeness proof, which one
would not in general expect to hold in the presence of infinitary inference rules.

A decorated tree in Q† is a tree each node of which is labeled by a L†-formula.
The formulas labeling the leaves of the tree are called assumptions, whereas the
formula labeling the root is the conclusion. We write

Γ
····
P

to denote a decorated tree with conclusion P and whose assumptions belong to Γ.
A derivation in Q† is a decorated tree that can be generated through the instruc-

tions collected in Figure 6. These instructions should be read as saying: if all the

P axiom instance
P

Γ
····
P

∆
····

P → Q

Q

Γ
····

At(F̄ )(P )
x/∈FV(F̄ ,P )

At(F̄ )(∀xP )

····
P

At(F̄ )(P )

Γ1
····

At(F̄ )(At(X̄ σ̄1)(P ))

Γ2
····

At(F̄ )(At(X̄ σ̄2)(P )) · · · {σ̄i:i∈ω}=Nice(Types)

X̄σ̄i /∈FV(Γi,F̄ ,P )At(F̄ )(■P )

Figure 6. Derivations

decorated trees above the displayed line are derivations, then the result of adding
a root below all such derivations, labeled as indicated, is also a derivation.

A derivation with assumptions in Γ and conclusion P is called a derivation of P
from Γ. Write Γ ▷ P to mean that there is a derivation of P from Γ.
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A Q†-theory, or just theory for short, is a set T of terms of type t containing Q†
that is closed under the rules included in the axiomatization of Q†. Note that Q† is
the least theory. It is straightforward to verify that when Γ is a set of L†-formulas,
the least theory containing Γ equals the set of all L†-formulas P such that Γ ▷ P .
In particular, P is a theorem of Q† iff ∅ ▷ P . Intuitively, this is so because the
instructions in Figure 6 mirrors the inference rules of Q†. Notice that (UG) has no
counterpart instruction, but as we noted already it can be seen as a special case of
(At-UG), which does correspond to an instruction. Thus, we henceforth identify ▷
with ⊢ as defined by Figures 2 to 4.

A.2. Soundness of Q†. Let us begin with the soundness component of Theo-
rem A.2.

Lemma A.3. Whenever Γ∪{P} is a set of L†(Σ)-formulas, if Γ ⊢ P , then Γ |= P .

Proof. We need to check that every instance of any axiom schema of Q† is valid over
all L†-models and that the rules of Q† preserve validity over all models. The cases
of axiom schemas and rules of FH† are routine generalizations of soundness proofs of
FH+ with respect to standard models of higher-order free logic. That every instance
of any axiom schema from Figures 3 and 4 is valid in any L†-model follows from
routine arguments based on observations already made throughout the paper. I
spell out the arguments to the effect that the rules from Figures 3 and 4 preserve
validity over all L†-models. These are also routine, but perhaps not as immediately
apparent.

Let us begin with (At-Nec). Assume P is valid in all L† models. Let A be any
L†-model. Then P is valid in every repointing of A, which is to say that A |= if̄ JP Kg

holds for every domain f̄ and variable assignment g. That implies A |= J■P Kg holds
for every variable assignment g.

Now consider (At-UG). Assume P → At(F̄ )(Q) is valid in every L†-model and
let x /∈ FV(P, F̄ ). Let A be a L† model and assume A |= JP Kg for arbitrary g. Since

x /∈ FV(P, F̄ ), also A |= JP Kg[x7→a] for every a of the right type. Consequently,
A |= JAt(F̄ )(P )Kg[x7→a] for each a. Let f̄ := JF̄ Kg and observe that f̄ := JF̄ Kg[x7→a]

for each a, as x /∈ FV(F̄ ). So, A |=f̄ JQKg[x7→a] for each a, in particular for each
a with A |=f̄ App(JE!Kg[x7→a],a). This implies A |=f̄ J∀xQKg[x7→a] and in turn
A |=f̄ J∀xQKg because x /∈ FV(∀xQ). Thus, indeed, A |= JAt(F̄ )(∀xQ)Kg.

Finally, consider (Surj). Assume that P → At(F̄ )(At(X̄)(Q)) is valid in every L†-
model any nice term sequence consisting of variables X̄ : σ̄ with X̄ /∈ FV(P,Q, F̄ ),
for all nice type sequences σ̄. Let A be a L†-model and assume A |= JP Kg for
arbitrary g. Let X̄ : σ̄ be arbitrary as above and let f̄ := JF̄ Kg. Then also A |= JP Kh
for every h that differs from g at most on X̄. So, A |=f̄ JAt(X̄)(Q)Kh for each such
h. This implies that A |=f̄ iḡJQKg holds for every σ̄-domain ḡ: simply choose the
variable assignments h so that JX̄Kh = ḡ and observe that JQKg = JQKh by the
conditions on X̄. We can repeat this reasoning for every nice type sequence σ̄. So,
we may infer A |=f̄ J■QKg, and in turn A |= JAt(F̄ )(■Q)Kg. □

A.3. Completeness of Q†. That was the easy part; let us turn to completeness.
I will adopt a standard term model-based strategy to the present setting. The
main obstacle we need to overcome is that strategies of this sort typically appeal
to compactness properties: if P follows from a set of assumptions Γ, then it follows
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from a finite subset thereof. However, consequence in Q† is not obviously compact,
in view of the infinitary rule (Surj).

I will show that the construction can nonetheless be run without appealing to
compactness. This has to do with the particular shape of (Surj): while the rule does
require infinitely many assumptions, the form of its assumptions is uniform. Using
this observation, we can prove that the union of a countable chain of theories each of
which conservatively extends its predecessors is itself a theory (Lemma A.6). This
claim, in general, can fail in the presence of infinitary rules. It is usually derived as
a consequence of compactness, but one can of course just apply it directly insted.40

Besides this epicycle, the other novelty of the present proof is its use of a strength-
ened notion of witness completeness. Normally, in using a construction of this sort
to prove completeness (for free logics), one seeks to construct a term model from a
maximal consistent theory that is witnessed in the sense that for every existentially
quantified statement we can find a close term that witnesses the existential. In
our setting, we will also want to witness existentials within the scope of domain
specifiers, so that for every formula At(F̄ )(∃xP ) can be witnessed by some closed
term within the scope of that very domain specifier. In addition, we will want to
“witness” claim made with ♦: for every term of the form At(F̄ )(♦P ) we must be
able to find a nice term sequence C̄ made up of closed terms that witnesses the
possibility claim within the scope of At(F̄ ).

Starting with a maximal consistent theory with these properties, we construct
a term structure by identifying terms up to substitutional indiscernibility. In this
structure, we can identify substitutions with maps that result from lifting functions
over terms of the form M 7→ At(F̄ )(M) to equivalence classes.

A theory T is called consistent when T ̸⊢ ⊥, and maximal consistent when it is
consistent and has no consistent proper extensions.

Definition A.4 (Witnessing concepts). A theory T is called strongly witnessed
when the following conditions hold:

(1) Quantifier witnessing : for each At(F̄ )(∃xP ) : t, there is a closed term c
such

At(F̄ )(∃xP → (E!c ∧ P [c/x]))

is a theorem of T ;
(2) Domain witnessing : for each At(F̄ )(♦P ) : t, there is a nice term sequence

of closed terms C̄ such that

At(F̄ )(♦P → At(C̄)(P ))

is a theorem of T .

Henceforth we call a C̄ as above a nice closed sequence.

Lemma A.5. Let ā be non-logical constants and x̄ be variables whose types match
those of ā. If Γ ⊢ P , then the following hold:

(1) Γ[x̄/ā] ⊢ P [x̄/ā], so long as the substitution can be done without variable
capture.

(2) Γ[ā/x̄] ⊢ P [ā/x̄], so long as no constant in ā occurs in Γ.

40I do not know whether compactness actually fails for Q. If (Surj) admits a finitary reformu-
lation, then it does not, in which case this epicycle would not be necessary. I have not settled this

question, so the epicycle is necessary.
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Proof. Routine induction on derivation length. □

Lemma A.6. Let (Ti)i∈ω be a chain of theories with respect to inclusion such that
each Ti conservatively extends Tj whenever j < i. Then the union Tω of the Ti’s is
a theory.

Proof. We need to show that Tω is closed under derivability. Assume Tω ⊢ P and
let D be a derivation that witnesses this. We show that P ∈ Tω by induction on D.

If D has a single node, this is obvious. Assume inductively that the claim holds
for all subderivations of D. The induction steps for finitary rules are all proved
analogously; I illustrate with the case of (MP). Suppose D has the form

Γ
····
Q

∆
····

Q → P

P .

By the induction hypothesis, Q,Q → P ∈ Tω. Since only finitely many constants
can occur in a finite set of terms, the conservativity assumptions imply there must
be a least i such that Q,Q → P ∈ Ti. Then Q ∈ Ti because Q,Q → P ⊢ P .

Now assume D has the form

Γ1
····

At(F̄ )(At(X̄ σ̄1)(P ))

Γ2
····

At(F̄ )(At(X̄ σ̄2)(P )) · · · {σ̄i:i∈ω}=Nice(Types)

X̄σ̄i /∈FV(Γi,F̄ ,P )At(F̄ )(■P )

By the induction hypothesis, At(F̄ )(At(X̄ σ̄i)(P )) ∈ Tω for each i ∈ ω. All these
terms differ from one another only in the variable sequences X̄ σ̄i . In particular, they
all contain the same constants. Since a term only contains finitely many constants,
there must be a least j such that At(F̄ )(At(X̄ σ̄i)(P )) ∈ Tj for all i ∈ ω. But then
At(F̄ )(■P ) ∈ Tj by (Surj), so At(F̄ )(■P ) ∈ Tω. □

Notice that in logics axiomatized via infinitary rules, the union of a countable chain
of theories conservatively extending one another need not be a theory. This can
considerably complicate completeness proofs. In our case, luckily, Lemma A.6 goes
through through because of the special shape of (Surj).

Lemma A.7. Every consistent theory can be extended to a domain witnessed,
consistent theory in a richer signature.

Proof. Let T be a consistent theory in signature Σ and let Σ+ expand Σ with
countably many constants at each type of the form σ → t. Fix an enumeration of
the nice closed sequences constructed entirely out of new constants from Σ+ ∖ Σ.
Let (F̄ , P )1, (F̄ , P )2, . . . enumerate the pairs (F̄ , P ) such that F̄ ∈ Nice(Σ+) and
P ∈ Lt

†(Σ
+). Write F̄i and Pi, respectively, for the first and second projection of

(F̄ , P )i.
41

41Notice that F̄1, F̄2, . . . is not an enumeration of Nice(Σ+), since we will sometimes have
F̄i = F̄j for i ̸= j. Likewise for the other projection.
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We construct countable chains of signatures Σ0,Σ1, . . . and theories T0, T1, . . ..
Let Σ0 := Σ and T0 := T . Assume Σn and Tn have been defined in such a way that
Tn is a Σn-theory that conservatively extends its predecessors. To construct Σn+1

and Tn+1, look at (F̄ , P )n+1. Say that a nice type sequence σ̄ is available when
there is no derivation witnessing Γ ⊢ At(F̄n+1)(At(X̄)(¬Pn+1)) for Γ ⊆ Tn and X̄ /∈
FV(Γ, F̄n+1, Pn+1). For each available σ̄, choose the least nice closed sequence of
fresh constants (with respect to the previously fixed enumeration) indexed by σ̄ that
does not occur in F̄n+1, Pn+1 and has not been used previously in the construction.
Define Σn+1 by adding all constants occurring in some chosen nice closed sequence
or other to Σn. Then, define Tn+1 as the least Σn+1 theory expanding Tn with a
witnessing axiom

DWitC̄n+1 := At(F̄n+1)(♦Pn+1 → At(C̄)(Pn+1))

for each chosen C̄.
I claim that Tn+1 conservatively extends Tn. For let Q ∈ Lt

†(Σn) and assume
Tn+1 ⊢ Q. That is to say

Tn, {DWitC̄n+1 : C̄ chosen } ⊢ Q. (36)

Because no constant in any chosen C̄ occurs in Tn nor Q, we can apply Lemma A.5
to infer that

Tn, {DWitC̄n+1[X̄/C̄] : C̄ chosen } ⊢ Q, (37)

where each X̄ is chosen to consist only of fresh variable (relabeling variables if
necessary).

Thus, for each available σ̄ we have

Tn,¬Q ⊢ At(F̄n+1)(At(X̄)(¬Pn+1)), (38)

for some fresh X̄ indexed by σ̄. Further, note that, by the definition of availability
and the fact that derivability is monotonic, the above also holds true for each σ̄
that is not available. This allows us to apply (Surj) to infer

Tn,¬Q ⊢ At(F̄n+1)(■¬Pn+1). (39)

Because Tn,¬Q ⊢ At(F̄n+1)(♦Pn+1) also holds, we conclude

Tn,At(F̄n+1)(♦Pn+1 → ♦Pn+1) ⊢ Q. (40)

But obviously At(F̄n+1)(♦Pn+1 → ♦Pn+1) is a theorem of Tn, whence Tn ⊢ Q, as
desired.

We have proved that each Tn+1 conservatively extends Tn. Thus, we may apply
Lemma A.6 to infer that the union Tω of the Tn’s is a theory. By construction, Tω

is domain witnessed. Moreover, the conservative extension of a consistent theory is
consistent, and Tω is clearly a conservative extension of all the Tn’s. □

Lemma A.8. Every consistent theory can be extended to a quantifier witnessed,
consistent theory in a richer signature.

Proof. Let T be a consistent theory in signature Σ. Let Σ+ expand Σ with count-
ably many constants at each type. Fix an enumeration of the new constants in
Σ+∖Σ. Let (F̄ , x, P )1, (F̄ , x, P )2, . . . be an enumeration of the pairs (F̄ , x, P ) such
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that F̄ ∈ Nice(Σn), x ∈ Var and P ∈ Lt
†(Σn). Write F̄i, xi, and Pi for the first,

second, and third projection of (F̄ , ∃xP )i.
42

As before, we define a chain of signatures Σ0,Σ1, . . . and a chain of theories
T0, T1, . . . with respect to inclusion. Let T0 := T and Σ0 := Σ. Assume Tn and
Σn have been defined and that Tn is a Σn theory that conservatively extends its
predecessors. Define Σn+1 by adding to Σn the least constant c, relative to the
previously fixed enumeration, that has the same type as xn+1, does not occur in
either F̄n+1 or Pn+1, and has not been used previously in the construction. Then,
define Tn+1 as the least Σn+1-theory expanding Tn with a witnessing axiom

QWitn+1 := At(F̄n+1)(∃xn+1Pn+1 → (E!c ∧ Pn+1[c/xn+1])).

Again, I claim that Tn+1 conservatively extends Tn. The argument is analogous
to that used to prove conservativity in Lemma A.7, using (At-UG) instead of (Surj).
Thus, applying (A.5), we infer that the union Tω of the Tn’s is a theory. For
the same reasons as before, Tω is consistent, and by construction it is quantifier
witnessed. □

Lemma A.9. Every consistent theory can be extended to a strongly witnessed theory
in a richer language.

Proof. Let T be a consistent theory. Apply Lemma A.7 and Lemma A.8 at alternate
steps to construct a chain of consistent theories T0, T1, . . . such that, for each n even,
Tn+1 is a domain witnessed conservative extension of Tn and Tn+2 is a quantifier
witnessed conservative extension of Tn+1. Then the union Tω :=

⋃
n∈ω Tn is a

consistent theory by Lemma A.6, and both domain and quantifier witnessed by
construction. □

Lemma A.10. Every consistent theory T can be extended to a maximal consistent
theory in the same language. Moreover, if T is domain (quantifier) witnessed, then
so is any maximal consistent extension thereof in the same language.

Proof. Given Lemma A.6, the first part of the lemma can be proved by a standard
Zorn’s lemma argument. The second part is straightforward to verify. □

We are now ready to prove completeness. There is nothing very surprising in the
remainder of the argument; most of the non-standard moves were made to prove
the lemmas above.

Lemma A.11. Whenever Γ ∪ {P} is a set of L†(Σ)-formulas, if Γ |= P , then
Γ ⊢ P .

Proof. Assume Γ ̸⊢ P . Let x̄ enumerate FV(Γ ∪ {P}). Expand the language with
fresh non-logical constants ā whose types match those of x̄. Then Γ[ā/x̄] ̸⊢ P [ā/x̄].
For if otherwise Γ[ā/x̄] ⊢ P [ā/x̄], then Lemma A.5 would imply Γ[ā/x̄][x̄/ā] ⊢
P [ā/x̄][x̄/ā], which is to say Γ ⊢ P .

Thus Γ[ā/x̄] is consistent. Let T be a maximal consistent, strongly witnessed
extension of the least theory generated by Γ[ā/x̄]. This must exist by Lemmas A.8
and A.10. Clearly, P [ā/x̄] /∈ T . Let L†(Σ) be the language of T .

42The same comment made in Section A.3 applies here.
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Define M ∼ N iff T ⊢ M = N . This is clearly a congruence with respect to
application, in view of (SLL■). Let [M ] be the equivalence class of M under ∼.
We define an applicative structure Tm := ([Cl†(Σ)], [App]) by letting [Cl†(Σ)] be
the quotient, through ∼, of the set Cl†(Σ) of closed terms in L†(Σ), and

[App]([M ], [N ]) := [MN ].

Since ∼ is a congruence with respect to application, [App] is well defined.
For each F̄ ∈ Nice†(Σ) consisting entirely of closed terms, define a partial func-

tion on types [F̄ ] with [F̄ ](σ) = [Fσ] whenever the latter is defined, and undefined
otherwise. Let [Dom] be the set of all such partial functions. For each [F̄ ] ∈ [Dom],
define a substitution [i][F̄ ] by putting, for each [M ] ∈ [Cl†(Σ)],

[i][F̄ ]([M ]) := [At(F̄ )(M)].

Let I be the set of such substitutions. It forms a monoid I under the operation

[i][F̄ ][◦][i][Ḡ] := [i][F̄◦Ḡ].

This is easily seen by applying (Id) and (CompG). Thus, (I,Tm,Sub) is a substi-
tution structure, with Sub identified with function application.

Moreover, Tm := (I,Tm,Sub, [i]) is a quantificational substitution structure.
Using (Id), we can see that the identity unit σ-domain exists and coincides with
[E!σ]. Further, (Composition) and (Identity) hold because T contains every instance
of (Id) and (CompG). Since, in Q†, the claim M ≡ N is weaker than M = N ,
it follows that Tm is not regular. However, it is clearly quasi-Leibnizian, as we
identified elements [M ], [N ] precisely when T ⊢ (■M ≡ N).

Let us now turn Tm into a model. When g is a variable assignment on Tm, define

JMKg := [M [c̄/x̄]],

where x̄ := (x1, . . . , xn) are all the free variables in M and c̄ := (c1, . . . , cn) is such
that g(xi) = [ci] for each xi. It is routine to verify that J·Kg is a stable interpretation.
Finally, for [P ] ∈ [Cl†(Σ)]

t, define

Tm |= [P ] : ⇐⇒ T ⊢ P.

The result is a model. That (1) and (2) from Definition 5.1 hold follows from the
fact that T contains every instance of (Taut). That (3) holds follows because T
contains every instance of (WLL).

For (4), assume Tm |= [i][F̄ ]J∀xP Kg. Then Tm |= [i][F̄ ][∀xP [c̄/ȳ]], with c̄ as

in the definition of J·Kg above. This is equivalent to T ⊢ At(F̄ )(∀xP [c̄/ȳ]). Take
[a] with Tm |= [i][F̄ ]([App]([E!], [a])), i.e., T ⊢ At(F̄ )(E!a). Using (FrUI), At-Nec,

(App) (Stab♡) and (WLL), this implies T ⊢ At(F̄ )(P [ac̄/xȳ]) which is equivalent
to Tm |= [i][F̄ ]JP Kg[x7→[a]]. Conversely, assume Tm ̸|= [i][F̄ ]J∀xP Kg. Since T is

maximal consistent it follows that T ⊢ At(F̄ )(∃x¬P ). Since T is strongly witnessed
and consistent it follows that T ⊢ At(F̄ )(E!a ∧ ¬P [c̄a/ȳx]) for some closed term a.
Thus, we have found [a] with Tm |= [i][F̄ ](App([E!], [a])) and Tm ̸|= [i][F̄ ]JP Kg[x7→[a]].

(5) is proved analogously.
For (6), assume Tm |= [i][F̄ ]J■P Kg. Then T ⊢ At(F̄ )(■P [c̄/ȳ]). If [Ḡ] ∈ [Dom],

then T ⊢ At(F̄ )(At(Ḡ)(P [c̄/ȳ])) can be easily derived using (Master), (At-Nec),
(App) and (Stab♡). This shows Tm |= ([i][F̄ ] ◦ [i][Ḡ])JP Kg. Conversely, assume

Tm ̸|= [i][F̄ ]J■P Kg. That means T ̸⊢ At(F̄ )(■P [c̄/ȳ]), so T ⊢ At(F̄ )(♦¬P [c̄/ȳ])
because T is maximal consistent. Since T is domain witnessed, there must be
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some nice closed sequence Ḡ such that T ⊢ At(F̄ )(At(Ḡ)(¬P )). This shows that
Tm ̸|= ([i][F̄ ] ◦ [i][Ḡ])JP Kg, as desired.

We have shown that Tm with interpretation and satisfaction as just defined, is
a model. Now, consider any variable assignment g with g(x̄) = ā, where x̄ and ā
are chosen as in the beginning of the proof. Then Tm |= JQKg for each Q ∈ Γ and
Tm ̸|= JP Kg, as desired. □

This completes our proof of Theorem A.2.

A.4. Soundness and completeness of Q⋆. The proof of Theorem A.1 follows the
same blueprint. Write ⊢∗ for derivability in Q⋆—the relation defined by Figures 2
and 3 taking only instances from L⋆. It is straightforward to verify that Γ ⊢∗ P iff
there is a derivation of P from Γ that uses only L⋆-formulas.

Thus, the soundness proof for Q† already contains a soundness proof for Q⋆: no
derivation containing only L⋆-formulas can use the rule (Surj), so we can just skip
that case in the induction of derivations and work with L⋆-models rather than
L†-models.

As for completeness, the proof can be streamlined somewhat. Since derivations
that do not use (Surj) are always finite, it follows that consequence in Q⋆ is compact:
Γ ⊢∗ P implies that Γ′ ⊢∗ P for some finite subset Γ′ ⊆ Γ. This has an analog of
Lemma A.6 as a straightforward consequence. The rest of the proof proceeds the
same way, though we do not need to go through domain witnessed theories since ■
is no longer in the language.
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